Project Icon

HyperTS

全面的时间序列分析工具包 支持多任务和多模式分析

HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。

timeshap - 针对循环模型的时序数据解释框架
GithubShapley值TimeSHAP序列扰动开源项目模型解释递归模型
TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。
TS-TCC - 创新的时间序列无监督表示学习方法
GithubIJCAI对比学习开源项目时间序列自监督学习表示学习
TS-TCC是一种无监督时间序列表示学习框架,利用时间和上下文对比从未标记数据中学习表示。该方法在多个真实数据集上表现优异,适用于少量标记数据和迁移学习场景。TS-TCC还扩展到半监督设置(CA-TCC),相关研究发表于IEEE TPAMI。这一方法为时间序列分析提供了有效的表示学习工具,推动了该领域的发展。
pyaf - Python开源库实现自动化时间序列预测
GithubPyAFPython开源项目时间序列预测机器学习自动化
PyAF是一个开源的Python自动预测库,基于NumPy、SciPy等流行数据科学模块构建。该库利用机器学习方法自动预测时间序列未来值,功能comparable于一些商业预测产品。它支持信号分解、外生数据和层次预测,提供简洁API和可定制建模过程。PyAF适用于Python 3.x,采用BSD 3-Clause许可证。PyAF可用于销售预测、股票走势分析、能源需求预测等多种时间序列预测任务。
chronos-t5-tiny - 轻量级预训练时间序列预测模型
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Tiny是基于T5架构的轻量级预训练时间序列预测模型,拥有800万参数。它将时间序列转换为token序列进行训练,可生成概率性预测。该模型在大量公开和合成时间序列数据上训练,能处理多种预测任务,适合快速部署和推理。作为Chronos系列的一员,它为时间序列分析提供了高效的解决方案。
functime - 高性能时间序列机器学习Python库
GithubPolarsPython库全局预测开源项目时间序列机器学习特征提取
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。
forecast - R语言时间序列预测分析工具
ARIMA模型GithubR包forecast开源项目指数平滑时间序列预测
forecast是一个R语言包,用于单变量时间序列预测分析。它支持ETS、ARIMA、ARFIMA、STL和TBATS等多种预测模型,包括基于状态空间模型的指数平滑和自动ARIMA建模。该包提供可视化工具,便于展示和分析预测结果。forecast适用于不同水平的数据分析人员,提供多样化的时间序列预测工具。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
HolisticTraceAnalysis - 高效分析分布式训练性能瓶颈的开源工具
GPUGithubHolisticTraceAnalysisPyTorch分布式训练开源项目性能分析
HolisticTraceAnalysis是一款开源性能分析工具,用于识别分布式训练中的性能瓶颈。它分析PyTorch Profiler收集的跟踪数据,提供时间分解、内核分析、通信计算重叠等功能。支持Linux和Mac系统,适用于Python 3.8及以上版本。开发者可通过该工具深入分析和优化分布式训练性能。
Stock-Prediction-Models - 开源股票预测与交易模型集合
GithubStock-Prediction-Models交易代理开源项目机器学习深度学习股票预测
一个涵盖多种机器学习和深度学习模型的开源库,专用于股票预测和交易仿真。包括LSTM、GRU、CNN等模型,以及Q学习、进化策略等强化学习代理。此外,还提供特斯拉股票研究、异常值分析、蒙特卡洛仿真等数据探索功能,适用于实时预测和历史数据分析。
chronos-t5-large - T5架构驱动的大规模时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测概率预测模型预训练模型
Chronos-T5-Large是一个大规模时间序列预测基础模型,基于T5架构设计,包含7.1亿参数。模型通过将时间序列转换为token序列进行训练,能够生成概率性预测结果。它在海量公开时间序列数据和合成数据上训练,适用于广泛的时间序列预测任务。研究人员可使用简洁的Python接口调用模型,获取未来趋势预测及相应的置信区间。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号