Project Icon

happy-transformer

便捷调优与推理NLP Transformer模型

Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。

commented-transformers - 精细注释的Transformer在PyTorch中的实现
Attention机制BERTGPT-2GithubPyTorchTransformer开源项目
详细注释的Transformer实现,涵盖从头创建Transformer系列,包括注意力机制和整体Transformer的实现。提供双向注意力、因果注意力及因果交叉注意力的实现,以及GPT-2和BERT模型的单文件实现,兼容torch.compile(..., fullgraph=True)以提高性能。
mformer-sanctity - 开源深度学习NLP开发框架
GithubHuggingfaceMIT协议transformers开源协议开源项目模型编程语言软件许可
这是一个基于MIT许可证的开源自然语言处理项目,使用transformers技术进行开发。该框架旨在为NLP应用开发提供支持,集成了相关工具和技术组件。框架采用模块化设计,便于开发者进行自然语言处理相关功能的开发和部署。
t5 - Optimum Habana为Transformer模型提供Gaudi处理器加速支持
GithubHPUHugging FaceHuggingfaceOptimum HabanaT5开源项目模型自然语言处理
Optimum Habana是一个开源项目,旨在连接Hugging Face Transformers和Diffusers库与Habana Gaudi处理器(HPU)。该项目提供了工具集,支持在单个或多个HPU上高效加载、训练和推理各类下游任务模型。其中包含了T5模型的GaudiConfig配置文件,实现了在Gaudi处理器上的优化运行。用户可以通过配置来使用Habana定制的AdamW实现和融合梯度裁剪等HPU专属功能,从而提升模型性能。
AiLearning-Theory-Applying - 人工智能领域的全面学习资源
AiLearning-Theory-ApplyingGithubTransformer开源项目机器学习深度学习自然语言处理
AiLearning-Theory-Applying项目提供人工智能领域的全面学习资源,覆盖基础知识、机器学习、深度学习及自然语言处理。项目持续更新,附带详尽注释和数据集,便于理解与操作,助力初学者及研究人员迅速掌握AI理论及应用实践。
Transformers-for-NLP-2nd-Edition - BERT到GPT-4的Transformer模型详解
BERTGPT-4GithubOpenAI APITransformers-for-NLP-2nd-Edition开源项目机器学习
本项目涵盖了从BERT到GPT-4的Transformer模型,提供了在Hugging Face和OpenAI环境下的微调、训练及提示工程示例。还包括ChatGPT、GPT-3.5-turbo、GPT-4和DALL-E的使用示例,包括语音到文本、文本到语音、文本到图像生成等内容。详述了GPT-4 API提示工程和最新平台更新,提供实用的指导与教程。
swin - 使用Habana Gaudi实现高效Transformer部署与训练
GithubHabanaHuggingfaceOptimum HabanaSwin Transformer开源项目模型混合精度训练
Optimum Habana是Hugging Face Transformers和Diffusers库与Habana Gaudi处理器之间的接口,提供针对单一和多HPU的高效模型加载、训练和推理工具。该项目包含Swin Transformer模型的GaudiConfig,支持Habana定制的AdamW优化器、梯度剪裁和Torch Autocast混合精度。采用bf16混合精度训练以提升性能,并提供图像分类示例脚本供开发者参考。
emotion-english - 基于自然语言处理的20类情感识别模型
GithubHugging FaceHuggingface开源项目情感分类文本分析机器学习模型自然语言处理
emotion-english项目是一个基于transformers库的文本分类模型,可识别20种不同情感。该模型支持从愤怒、好奇到悲伤、欢乐等多样化情感识别,易于集成到各类自然语言处理应用中。这一工具为情感分析任务提供了精确而全面的解决方案,适用于需要深入理解文本情感的各种场景。
rwkv-4-169m-pile - RNN与Transformer的高性能结合:高效文本生成
GPUGithubHuggingfaceRWKV人工神经网络开源项目文本生成模型转换脚本
RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。
a-PyTorch-Tutorial-to-Transformers - PyTorch实现Transformer模型的详细教程与实践指南
GithubPyTorchTransformer开源项目机器翻译注意力机制编码器-解码器架构
本项目提供了一个基于PyTorch的Transformer模型实现教程。教程深入讲解了Transformer的核心概念,如多头注意力机制和编码器-解码器架构,并以机器翻译为例展示应用。内容涵盖模型实现、训练、推理和评估等环节,适合想要深入理解和应用Transformer技术的学习者。
joeynmt - 简洁而清晰的NMT模型实现,促进教育和学习
GRUGithubJoey NMTPyTorchTransformer开源项目机器翻译
Joey NMT框架专为教育而设计,提供简明和清晰的代码库,帮助初学者理解RNN和Transformer等经典NMT架构。其主要特点包括模块化设计,便于修改组件及训练流程,保持代码可读性。支持多个注意力机制、不同的分词类型和多语种翻译,包含详细的文档和教程,适用于模型训练、测试和翻译的各个阶段。最新版本引入分布式数据并行和多项优化,兼容最新的Python和PyTorch版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号