Project Icon

happy-transformer

便捷调优与推理NLP Transformer模型

Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。

OpenRLHF - 高性能强化学习框架助力大规模语言模型优化
GithubOpenRLHFRLHF框架分布式训练开源项目强化学习模型微调
OpenRLHF是一款基于Ray、DeepSpeed和Hugging Face Transformers构建的高性能强化学习框架。该框架简单易用,兼容Hugging Face模型和数据集,性能优于优化后的DeepSpeedChat。它支持分布式RLHF,能够在多GPU环境下进行70B+参数模型的全规模微调。OpenRLHF集成了多项PPO实现技巧以提升训练稳定性,同时支持vLLM生成加速和多奖励模型等先进特性,为大规模语言模型优化提供了强大支持。
bigbird-roberta-base - 高性能长序列文本处理的稀疏注意力Transformer模型
BigBirdGithubHuggingfacetransformer模型开源项目模型深度学习自然语言处理长序列处理
BigBird-RoBERTa-base是一种基于块稀疏注意力机制的Transformer模型,可处理长达4096个token的序列。该模型在Books、CC-News、Stories和Wikipedia等大规模数据集上预训练,大幅降低了计算成本。在长文档摘要和长上下文问答等任务中,BigBird-RoBERTa-base展现出优秀性能。模型支持灵活配置注意力类型,可在默认的块稀疏模式和全注意力模式间切换,为超长序列文本处理提供了高效方案。
bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
prometheus-bgb-8x7b-v2.0 - Transformers模型标准化文档模板及最佳实践
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型训练模型说明
这是一个全面的Transformers模型文档模板,规范了模型卡片的编写标准。模板涵盖模型描述、应用场景、训练详情、评估方法等核心内容,有助于开发者系统记录和共享模型信息。从技术规格到环境影响,该模板提供了AI模型文档化的完整指南,促进了模型信息的标准化和透明度。
content-vec-best - 使用HuggingFace Transformers框架快速集成ContentVec模型
ContentVecGithubHuggingFaceHuggingface开源项目模型模型转换深度学习语音处理
Content Vec Best项目实现了ContentVec模型与HuggingFace Transformers框架的无缝集成。项目提供自定义HubertModelWithFinalProj类,详细的模型加载和使用说明,以及官方ContentVec模型到HuggingFace格式的转换脚本。这些功能使开发者能够轻松地在Transformers生态系统中应用ContentVec模型,提高了开发效率和模型的可访问性。
pytorch-openai-transformer-lm - 基于PyTorch的OpenAI Transformer语言模型实现
GithubOpenAIPyTorchTransformer Language Model开源项目模型预训练
该项目实现了OpenAI Transformer语言模型在PyTorch中的复现,提供了预训练权重加载脚本及模型类。采用固定权重衰减和调度学习率优化模型,支持对ROCStories Cloze任务进行微调,效果接近原始TensorFlow实现。适用于深度学习研究和语言模型的生成与分类任务。
xformers - Transformer 研究加速工具
GithubPyTorchTransformerxFormers开源项目注意力机制深度学习
xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。
Hugging Face - 源代码开源平台
AI工具AI开发Hugging Face企业解决方案合作平台开源机器学习模型训练热门
Hugging Face是开放源码机器学习平台,支持模型、数据集与应用的无限制托管,包含丰富的模态支持,已服务于超过5万家机构。
bge-large-en-v1.5 - Transformers.js适配的ONNX模型及其应用简介
GithubHuggingfaceONNXTransformers.js余弦相似度句子嵌入开源项目模型特征提取
该开源项目使用ONNX权重,以在Transformers.js环境下实现模型兼容。通过特征提取管道,用户能够高效计算句子嵌入,实现文本语义分析与快速检索,提升JavaScript环境下的文本处理效率。
mint - 从零构建Transformer模型的详细教程和实现
BERTGithubHuggingFaceMinTPyTorchTransformer开源项目
该项目提供了一系列循序渐进的教程,指导从零开始构建常见的Transformer模型,如BERT、GPT、GPT2、BART和T5。教程不仅讲解基本架构的实现,还包括预训练和微调示例,并提供小型PyTorch库以便额外使用。项目依赖HuggingFace的tokenizers库进行子词标记,适用于不同规模数据集的训练需求,还涵盖了多工作节点的分布式训练示例,非常适合希望深入了解Transformer模型原理和应用的学习者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号