Project Icon

opus-mt-cs-en

捷克语到英语的开源机器翻译模型

opus-mt-cs-en是一种捷克语到英语的开源翻译模型,使用transformer-align架构和OPUS数据集,经过SentencePiece处理。可以下载2019年12月18日的模型权重以进行试用。

opus-mt-en-eu - 基于Transformer的英语-巴斯克语机器翻译模型 Tatoeba测试集BLEU 31.8
GithubHuggingfaceTatoeba-Challengetransformer-align巴斯克语开源项目机器翻译模型英语
opus-mt-en-eu是一个英语到巴斯克语的机器翻译模型,基于transformer-align架构构建。模型使用SentencePiece进行预处理,在Tatoeba测试集上达到31.8 BLEU分数和0.590 chr-F分数。由Helsinki-NLP开发并以Apache-2.0许可发布,适用于英语到巴斯克语的翻译任务。模型支持单向翻译,可应用于需要高质量英巴翻译的场景。
opus-mt-en-de - 赫尔辛基大学开发的英德神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目机器翻译模型神经网络模型自然语言处理英德翻译
opus-mt-en-de是赫尔辛基大学开发的英德神经机器翻译模型。它基于OPUS语料库训练,适用于文本翻译和生成。模型在多个新闻测试集上表现优异,BLEU和chr-F评分突出。研究人员可通过Hugging Face平台便捷使用该模型进行翻译研究和应用开发。
opus-mt-tc-big-sh-en - 高效多语言神经机器翻译模型,支持塞尔维亚-克罗地亚语到英语的翻译
GithubHuggingfaceMarian NMTOPUS-MT开源项目文本翻译机器翻译模型语言模型
opus-mt-tc-big-sh-en是OPUS-MT项目开发的神经机器翻译模型,专门用于塞尔维亚-克罗地亚语(sh)到英语(en)的翻译。该模型采用Marian NMT框架训练,并转换为PyTorch格式以便于使用。在多个基准测试中,模型展现了优秀的性能,BLEU评分范围从37.1到66.5不等,证明了其在不同测试集上的翻译能力。作为OPUS-MT项目的一部分,该模型旨在为全球多语言翻译需求提供高质量、易用的解决方案。
opus-mt-tc-big-tr-en - OPUS-MT 项目开源的土耳其语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer土耳其语开源项目机器翻译模型英语
opus-mt-tc-big-tr-en 是 OPUS-MT 项目开发的土耳其语到英语神经机器翻译模型。该模型基于 Marian NMT 框架训练,并转换为 PyTorch 格式以兼容 Hugging Face transformers 库。在多个测试集上表现优异,Tatoeba 测试集上 BLEU 分数达 57.6。模型采用 transformer-big 架构,使用 OPUS 和 Tatoeba Challenge 数据训练,为研究人员和开发者提供了高质量的开源翻译工具。
opus-mt-gmq-en - 北日耳曼语到英语的翻译模型
GithubHuggingfaceNorth Germanic languagesTatoeba-Challenge开源项目模型翻译英语
这是一个基于transformer模型的项目,专注于将北日耳曼语言翻译为英语。使用了SentencePiece进行预处理,支持多种语言,比如丹麦语、挪威语和瑞典语。在Tatoeba测试集上,获得了58.1的BLEU评分。用户可以通过提供的链接下载原始模型权重和测试集,适合对多语言翻译有研究兴趣的开发者和研究人员。
opus-mt-en-fr - 英法机器翻译模型在多领域测试中表现卓越
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英法翻译语料库
opus-mt-en-fr是一个基于Transformer架构的英语到法语机器翻译模型。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在多个测试集上表现优异,包括新闻、讨论和Tatoeba等不同领域。模型在Tatoeba测试集上获得50.5的BLEU分数,展现了其在英法翻译任务中的高效性能。
opus-mt-tc-big-zls-en - 南斯拉夫语系至英语的机器翻译开源模型
GithubHuggingfaceMarian NMTOPUS-MT开源项目机器翻译模型神经网络自然语言处理
opus-mt-tc-big-zls-en是一个基于神经网络的机器翻译模型,用于南斯拉夫语系(zls)到英语(en)的翻译任务。作为OPUS-MT项目的组成部分,该模型采用Marian NMT框架开发,并已转换为PyTorch格式。模型支持包括保加利亚语、波斯尼亚语、克罗地亚语、马其顿语、斯洛文尼亚语和塞尔维亚语在内的多种南斯拉夫语言,可应用于相关语言的翻译工作。
opus-mt-de-es - 德语到西班牙语的智能翻译工具,支持更高的翻译准确性
BLEU评分GithubHuggingfaceopus-mt-de-es开源项目模型翻译模型语言对预处理
该开源项目通过使用transformer-align模型,将德语翻译为西班牙语,依托opus数据集,进行标准化和SentencePiece的预处理,提升翻译的准确性。用户可以下载模型的原始权重并查看相应的翻译测试集及评分,以了解其性能。在Tatoeba.de.es测试集中获得了48.5分的BLEU评分和0.676的chr-F得分,其高效性能在翻译领域具备一定的竞争力。
opus-mt-fr-de - transformer-align架构的法德翻译模型,适用于新闻政治等多领域
GithubHuggingfaceopus-mt-fr-de开源项目数据集机器翻译模型神经网络语言模型
该法德翻译模型基于transformer-align架构,使用OPUS数据集训练。模型在多个测试集上表现出色,Tatoeba测试集达49.1 BLEU分,新闻领域测试集普遍达22-28 BLEU分,在euelections_dev2019测试集上达26.4 BLEU分。采用normalization和SentencePiece预处理,适用于新闻、政治等多领域翻译。模型权重和测试集翻译结果可供下载使用。
opus-mt-nl-fr - 荷兰语到法语的开源机器翻译模型
GithubHuggingfaceSentencePieceopus-mt-nl-frtransformer-align开源项目模型翻译
这个开源项目用于实现荷兰语到法语的机器翻译,使用基于transformer-align的模型,并结合数据标准化与SentencePiece预处理。依托OPUS数据集,该项目在Tatoeba.nl.fr测试集上获得了51.3的BLEU分数,展示了较好的翻译效果。提供原始模型权重及测试集翻译文件,以供进一步研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号