Project Icon

opus-mt-en-et

英语至爱沙尼亚语神经机器翻译模型

该英语至爱沙尼亚语(en-et)翻译模型基于transformer-align架构构建,使用OPUS数据集训练。模型采用normalization和SentencePiece预处理技术,在Tatoeba、newsdev2018和newstest2018等测试集上分别获得了54.0、21.8和23.3的BLEU评分。模型提供预训练权重及相关评估数据下载。

opus-mt-en-bg - 英语到保加利亚语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba保加利亚语开源项目机器翻译模型英语
opus-mt-en-bg是一个基于Transformer架构的英语到保加利亚语机器翻译模型。该模型在Tatoeba测试集上达到50.6的BLEU分数和0.680的chrF值。它使用SentencePiece进行预处理,支持保加利亚语的拉丁字母变体,需要添加目标语言标记。这个模型是Helsinki-NLP开发的Tatoeba-Challenge项目的一部分,为英语到保加利亚语的翻译提供了开源解决方案。模型采用了normalization和SentencePiece (spm32k,spm32k)预处理方法,需要在句子开头添加'>>id<<'形式的目标语言标记。用户可以下载原始权重、测试集翻译和评分结果。该项目遵循Apache-2.0许可协议,为研究人员和开发者提供了可靠的英语到保加利亚语机器翻译资源。
opus-mt-nl-en - 基于Transformer的荷兰语-英语机器翻译模型
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语荷兰语
opus-mt-nl-en是一个基于Transformer架构的荷兰语-英语神经机器翻译模型。该模型使用OPUS数据集训练,经过规范化和SentencePiece预处理。在Tatoeba测试集上,模型表现优异,BLEU得分为60.9,chr-F得分为0.749。开发者可获取原始权重和测试集翻译结果,便于进行评估和应用。
opus-mt-en-sv - 基于Transformer的英瑞双语神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-svtransformer开源项目机器翻译模型语言模型
opus-mt-en-sv是一个开源的英语到瑞典语机器翻译模型,基于Transformer架构开发。该模型在Tatoeba测试集上实现60.1的BLEU分数和0.736的chr-F分数,展示了优秀的翻译质量。模型训练采用OPUS数据集,并应用normalization和SentencePiece进行预处理,旨在提供准确的英瑞双语文本转换。
opus-mt-en-ar - 英语到阿拉伯语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语阿拉伯语
opus-mt-en-ar是Helsinki-NLP团队开发的英语到阿拉伯语翻译模型。这个基于Transformer的模型支持包括现代标准阿拉伯语在内的多种阿拉伯语变体,使用SentencePiece进行分词,并要求输入特定的语言标记。在Tatoeba测试集上,模型获得了14.0的BLEU分数和0.437的chrF值,显示了其在英阿翻译任务上的性能。
opus-mt-eo-en - 准确的跨语言翻译引擎,支持世界语到英语的转换
BLEU评分GithubHuggingfaceopus-mt-eo-en开源项目数据集机器翻译模型
该项目专注于世界语到英语的翻译,使用transformer-align模型进行处理,结合SentencePiece和数据规范化。其在Tatoeba数据集上达到了54.8的BLEU分数,展示了出色的翻译能力。用户可以获取模型的详细资源,如下载原始权重和查看测试结果及评估分数,为跨语言交流提供有效支持。
opus-mt-en-gl - 英语到加利西亚语机器翻译模型 基于OPUS数据集
BLEU评分GithubHuggingfaceopus-mt-en-gl开源项目数据集机器翻译模型语言模型
opus-mt-en-gl是一个开源的英语到加利西亚语机器翻译模型。该模型采用transformer-align架构,基于OPUS数据集训练,使用normalization和SentencePiece进行预处理。在Tatoeba测试集上,模型达到36.4的BLEU得分和0.572的chr-F值,表现出较好的翻译质量。这个模型为英语到加利西亚语的翻译任务提供了一个有效的工具。
opus-mt-ja-en - 基于OPUS数据集的日英神经机器翻译模型
GithubHuggingfaceopus-mt-ja-en开源项目日英翻译机器翻译模型自然语言处理语言模型
该模型采用transformer-align架构,基于OPUS多语言平行语料库训练而成。预处理阶段使用了文本标准化和SentencePiece分词技术。在Tatoeba日英翻译测试集上,模型展现了优秀的性能,BLEU得分为41.7,chr-F得分为0.589。项目开源了模型权重和测试集译文,便于进行进一步的研究和应用。
opus-mt-ca-pt - 加泰罗尼亚语到葡萄牙语神经机器翻译模型实现44.9 BLEU评分
CatalanGithubHuggingfacePortugueseTatoeba开源项目机器翻译模型神经网络模型
opus-mt-ca-pt是一个专门用于加泰罗尼亚语到葡萄牙语翻译的神经机器翻译模型。该模型采用transformer-align架构,使用SentencePiece进行分词预处理,在Tatoeba测试集上达到44.9的BLEU分数和0.658的chrF值。这个由赫尔辛基大学NLP团队于2020年发布的开源模型,提供单向翻译功能。
opus-mt-en-id - 英语至印尼语开源神经机器翻译模型
GithubHuggingfaceopus-mt-en-id开源项目数据集机器翻译模型模型评估自然语言处理
opus-mt-en-id是一个开源的英语到印尼语神经机器翻译模型,基于Transformer架构设计。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到38.3 BLEU分和0.636 chr-F分的性能。项目提供预训练权重和测试集,方便研究人员进行评估和应用。
opus-mt-sk-en - 斯洛伐克语到英语的开源机器翻译模型
BLEUGithubHuggingfaceOPUSopus-mt-sk-en开源项目模型翻译
opus-mt-sk-en是一个开源的Transformers模型,用于将斯洛伐克语翻译为英语。该模型基于opus数据集,并通过规范化和SentencePiece技术进行预处理。在JW300测试集上,模型表现良好,获得42.2的BLEU分数。此工具适用于需要高质量翻译的研究人员和开发者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号