Project Icon

Grounded-SAM-2

多模态视频目标检测与分割框架

Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。

dinov2 - 通过无监督学习构建强大视觉特征的先进方法
DINOv2GithubVision Transformer开源项目自监督学习视觉特征计算机视觉
DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。
OBBDetection - 多框架支持的开源目标检测工具箱 提供灵活表示方法
GithubMMdetectionOBBDetection开源项目深度学习目标检测计算机视觉
OBBDetection是基于MMdetection v2.2的开源目标检测工具箱。它支持多种检测框架,包括RoI Transformer和Gliding Vertex等。该工具箱提供灵活的检测框表示方法,涵盖水平边界框、定向边界框和4点框。OBBDetection实现了S2ANet、Oriented R-CNN等多种最新定向目标检测方法,同时也兼容多种水平检测算法。作为一个全面的目标检测工具,它继承了MMdetection的特性,适用于各种复杂场景的目标检测任务。
yolov7 - 实时目标检测算法实现性能新突破
GithubYOLOv7开源项目性能优化深度学习目标检测计算机视觉
YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。
Video-MME - 全面评估多模态大语言模型视频分析能力的基准
GithubVideo-MME人工智能基准评估多模态大语言模型开源项目视频分析
Video-MME是一个创新的多模态评估基准,用于评估大语言模型的视频分析能力。该项目包含900个视频和2,700个人工标注的问答对,覆盖多个视觉领域和时间跨度。其特点包括视频时长多样性、类型广泛性、数据模态丰富性和高质量标注。Video-MME为研究人员提供了一个全面评估多模态大语言模型视频理解能力的工具。
CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoGithubMeta-Llama-3-8B-Instruct图像理解开源项目视频理解
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
GeoSeg - 遥感图像语义分割框架 支持多种数据集和先进模型
GeoSegGithubVision Transformer开源项目深度学习语义分割遥感图像
GeoSeg是一个开源的遥感图像语义分割工具箱,基于PyTorch等框架开发。它专注于先进视觉Transformer模型,支持多个遥感数据集,提供统一训练脚本和多尺度训练测试功能。项目实现了Mamba、Vision Transformer和CNN等多种网络架构,为遥感图像分割研究提供统一基准平台。
MiniGPT4-video - 提升视频理解的创新多模态语言模型
GithubGoldfishMiniGPT4-Video多模态开源项目视频理解长视频
MiniGPT4-Video项目采用交错视觉-文本标记技术,大幅提升了多模态大语言模型的视频理解能力。该模型在短视频理解方面表现优异,多项基准测试中均优于现有方法。项目还开发了Goldfish框架,专门应对任意长度视频的处理难题,有效解决了长视频理解中的噪声、冗余和计算挑战。这些创新成果为视频分析和理解领域开辟了新的可能性。
slambook2 - 视觉SLAM理论与实践开源代码库
GithubSlambook2开源代码开源项目机器人技术视觉SLAM计算机视觉
slambook2是《视觉SLAM十四讲:从理论到实践》第二版的开源代码库,涵盖视觉SLAM理论基础和实践应用。项目提供丰富的代码示例,包括视觉里程计、后端优化、回环检测等核心模块的实现,帮助SLAM爱好者和研究人员深入理解核心概念和实现技术。代码库包含中英文版本,并提供相关学习资源链接,适合不同背景的用户学习和研究视觉SLAM技术。
MOTSFusion - 将3D多目标跟踪与场景重建融合的创新算法
3D重建GithubKITTI数据集MOTSFusion开源项目目标跟踪计算机视觉
MOTSFusion项目提出了一种创新的多目标跟踪算法,通过融合3D跟踪和场景重建技术来提高准确性。该算法利用立体图像、光流和视差信息,结合分割网络和检测器,实现对车辆和行人的精确跟踪。项目在KITTI MOTS数据集上展现了优异性能,并开源了完整代码。这种方法为自动驾驶等应用中的多目标跟踪提供了新的思路。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号