Project Icon

rulm

俄语语言模型:的实现与性能对比

此项目展示了俄语语言模型的实现与比较,涵盖DataFest的分享、主要演示和Fine-tuning Colab资源链接。同时介绍了基于ChatGPT生成数据的RuTurboAlpaca和Saiga两个主要数据集,以及相关模型及其训练配置的详细内容。提供了数据集生成脚本和提示。此外,还展示了GPT Role-play Realm的数据集和模型评估结果,包括与GPT4和gpt-3.5-turbo的对比分析。

llama-3-8b-gpt-4o-ru1.0-gguf - 俄罗斯语言优化GPT模型,性能接近GPT-4并超越GPT-3.5-turbo
GPT-4oGithubHuggingfaceLlama-3Russian多语言能力开源项目模型模型评估
模型在俄语数据集上表现优异,通过GPT-4o进行多语言能力训练提升了数据质量。在MT-Bench测试中,经过1个epoch的训练后,该模型在俄语评估中超越了GPT-3.5-turbo,接近Suzume。用户可通过llama.cpp或gptchain框架在本地使用该模型。
ruadapt_llama3_instruct_lep_saiga_kto_ablitirated - 基于LEP和KTO技术的俄语适配大语言模型
GithubHuggingfaceLLaMa俄语适配开源项目机器学习模型自然语言处理语言模型
ruadapt_llama3_instruct_lep_saiga_kto_ablitirated是一个基于LLaMA 3和Learned Embedding Propagation (LEP)技术的大语言模型。它通过KTO和abliteration技术,在saiga_preferences数据集上训练,支持俄语和英语。模型运用先进的分词技术优化俄语适配,为自然语言处理提供新方案。这一创新模型特别适用于需要高质量俄语理解和生成的NLP任务,如机器翻译、文本分类和问答系统等。
rugpt3small_based_on_gpt2 - 俄语预训练语言模型基于GPT-2架构
GPTGithubHuggingfaceTransformers俄语开源项目模型自然语言处理预训练模型
rugpt3small_based_on_gpt2是SberDevices团队开发的俄语预训练语言模型。基于GPT-2架构,该模型在80B个token上训练约3轮,序列长度为1024,并进行了2048上下文长度的微调。训练过程耗时一周,使用32个GPU。该模型为俄语自然语言处理提供了坚实基础,其详细设计和评估已在相关论文中记录。
Vikhr-Llama-3.2-1B-instruct-GGUF - 俄语高效指令模型,适用于低性能或移动设备
GithubHuggingfaceVikhr-Gemma-2B-instruct俄罗斯语数据集开源项目文本生成模型移动设备高效性
此指令模型基于Llama-3.2-1B-Instruct,使用GrandMaster-PRO-MAX俄语数据集训练,能效比基础模型提升5倍,支持低性能或移动设备部署。支持在少量计算资源下实现强大的文本生成功能。生成温度建议为0.3。在ru_arena_general中表现优异,适合精确高效的文本生成需求。由Vikhr团队的知名作者开发,致力于推动开源大型语言模型的创新。
saiga_llama3_8b - 基于Llama-3模型的俄语聊天自动化工具
GithubHuggingfaceLlama-3Saiga俄语聊天机器人对话格式开源项目模型生成模型
项目基于Llama-3模型开发,专注于俄语对话处理。通过优化提示格式和配置,提升在信息提供和故事创作方面的应用。最新版本v7在性能和用户交互上取得显著进步,并支持多种格式以满足不同开发需求。用户可通过Colab体验此工具,探索其多任务处理能力。
Vikhr-Nemo-12B-Instruct-R-21-09-24 - 全新升级的俄英双语大语言模型 内置RAG检索增强功能
GithubHuggingfaceRAG技术Vikhr-Nemo人工智能开源项目机器学习模型语言模型
Vikhr-Nemo-12B-Instruct-R是一个基于Mistral-Nemo的开源语言模型,针对俄语和英语进行了深度优化。模型通过SFT和SMPO方法训练,具备推理分析、文本生成、代码编写等多项能力。其特色在于支持RAG检索增强和128K长文本处理,在俄语基准测试中接近gpt-4o-mini水平。该项目完全开源,包含训练代码和数据集。
ruRoPEBert-e5-base-2k - 俄语句子编码模型支持长上下文和高效注意力机制
CulturaXGithubHuggingfaceTransformersruRoPEBert俄语句向量模型开源项目模型
ruRoPEBert是Tochka AI团队基于RoPEBert架构开发的俄语句子编码模型。该模型在CulturaX数据集上训练,支持2048个token的上下文,并可扩展。模型集成高效注意力机制和平均池化层,易于使用。在encodechka基准测试中,ruRoPEBert的S+W评分领先其他模型。此外,它还支持分类任务,并可通过RoPE缩放扩展上下文窗口。
rugpt3large_based_on_gpt2 - 俄语Transformer模型SberDevices团队的训练与评估
GithubHuggingfaceSberDevicesTransformerrugpt3large_based_on_gpt2开源项目模型语言模型预训练模型
SberDevices团队开发的俄语Transformer模型,基于PyTorch进行训练,使用80B个标记在1024序列长度下进行3轮训练,接着进行2048长度的微调。整个过程耗时14天,最终在测试集上的困惑度为13.6,为俄语处理提供了新的可能性。
rubert-base-cased - 俄语优化BERT模型简介
BERTGithubHuggingface俄语模型开源项目机器学习模型深度学习自然语言处理
rubert-base-cased是一个针对俄语优化的BERT模型,基于俄语维基百科和新闻数据训练而成。模型采用12层结构,768个隐藏单元,12个注意力头,总计180M参数。它以多语言BERT-base模型为基础,使用俄语子词词汇表进行微调。最新版本支持掩码语言模型(MLM)和下一句预测(NSP)任务,为俄语自然语言处理提供了有力支持。
saiga2_13b_gguf - Llama.cpp支持的GGUF格式俄语对话模型
GithubHuggingfaceLlama.cpp俄语数据集开源项目模型模型量化自然语言处理语言模型
saiga2_13b_gguf是一个GGUF格式的俄语对话模型,基于多个俄语数据集训练,支持Llama.cpp部署。模型提供q4_K和q8_K两种量化版本,运行内存需求分别为10GB和18GB RAM。通过模型文件和交互脚本的配合,可实现命令行环境下的对话功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号