Project Icon

rulm

俄语语言模型:的实现与性能对比

此项目展示了俄语语言模型的实现与比较,涵盖DataFest的分享、主要演示和Fine-tuning Colab资源链接。同时介绍了基于ChatGPT生成数据的RuTurboAlpaca和Saiga两个主要数据集,以及相关模型及其训练配置的详细内容。提供了数据集生成脚本和提示。此外,还展示了GPT Role-play Realm的数据集和模型评估结果,包括与GPT4和gpt-3.5-turbo的对比分析。

distilrubert-base-cased-conversational - 经过蒸馏的俄语对话模型 提升速度减少参数
DistilRuBERTGithubHuggingface俄语模型开源项目模型模型压缩知识蒸馏自然语言处理
distilrubert-base-cased-conversational是一个经过知识蒸馏的俄语对话模型,基于RuBERT开发。该模型在保持性能的同时,将参数量减少24%,显著提升了推理速度。它在多种俄语对话数据集上训练,适用于广泛的对话场景。与原始RuBERT相比,该模型在CPU和GPU上均实现了更快的处理速度,为需要高效俄语对话处理的应用提供了优秀选择。
ruBert-base - 专为俄语遮蔽填充任务优化的Transformer预训练语言模型
GithubHuggingfacePyTorchTransformersruBert开源项目模型自然语言处理语言模型
ruBert-base是一个专为俄语遮蔽填充任务优化的预训练语言模型。该模型基于Transformer架构,由SberDevices团队开发,采用BPE分词器,词典大小12万token,模型参数量1.78亿。模型使用30GB训练数据,是俄语自然语言处理领域的重要研究成果。ruBert-base遵循Apache-2.0许可证,为俄语NLP应用提供了强大的基础支持。
rubert-base-cased-russian-sentiment - 基于RuBERT的俄语短文本情感分析模型
GithubHuggingfaceRuBERT俄语多类分类开源项目情感分析文本分类模型
这是一个基于RuBERT的俄语情感分析模型,专门用于短文本的多类别情感分类。模型支持中性、积极和消极三种情感标签,可通过Python代码轻松调用。它在多个俄语数据集上进行了微调,涵盖新闻、评论和社交媒体文本。该模型为需要进行俄语文本情感分析的开发者和研究人员提供了一个实用的工具。
distilrubert-small-cased-conversational - 小型化俄语对话模型提升推理速度
DistilRuBERTGithubHuggingface俄语模型开源项目模型模型压缩知识蒸馏自然语言处理
distilrubert-small-cased-conversational是一个经过知识蒸馏的小型俄语对话模型。它基于OpenSubtitles、Dirty、Pikabu等多种语料库训练,在保持性能的同时显著提高了推理速度。该模型在分类、命名实体识别和问答等NLP任务中表现出色,同时大幅减小了模型体积,适用于需要高效处理俄语自然语言的应用场景。
rubert-base-cased-sentiment - RuBERT模型实现俄语文本三分类情感分析
BERT模型DeepPavlovGithubHuggingface俄语文本开源项目情感分析模型自然语言处理
该项目基于DeepPavlov的RuBERT模型,通过35万多条多源俄语文本进行微调,实现了中性、积极和消极三分类的情感分析功能。模型支持transformers库调用,便于集成应用。训练语料涵盖社交媒体、产品评论等多个领域,提高了模型的通用性。
rubert-base-cased-nli-threeway - 开源俄语NLP模型:支持自然语言推理与零样本分类
BERTGithubHuggingfaceNLI俄语开源项目模型自然语言推理零样本分类
这是一个基于DeepPavlov/rubert-base-cased微调的开源俄语NLP模型。它能够预测短文本间的逻辑关系(蕴含、矛盾或中性),支持自然语言推理和零样本文本分类任务。该模型在多个俄语NLI数据集上训练,并在各种评估集上展现出优秀性能。其多功能性和高效表现使其成为处理俄语文本理解任务的有力工具。
rubert-tiny2-russian-sentiment - RuBERT-tiny2俄语文本情感分类模型
GithubHuggingfaceRuBERT-tiny2俄语多分类开源项目情感分析模型自然语言处理
RuBERT-tiny2俄语情感分类模型支持中性、积极和消极三类标签。该模型在Kaggle Russian News、Linis Crowd等多个数据集上训练,F1分数0.75,AUC-ROC达0.9。可通过transformers库轻松实现俄语短文本情感分析,适用于需要高效准确俄语情感分析的场景。
ChatGLM-Tuning - ChatGLM-6B和LoRA结合的经济型语言模型微调方案
AI模型ChatGLM-6BGithubLoRA开源项目微调深度学习
ChatGLM-Tuning项目是一个基于ChatGLM-6B和LoRA技术的语言模型微调解决方案。该项目包含数据预处理、模型训练和推理功能,支持Alpaca数据集。它提供预训练LoRA模型,并计划引入中文数据和RLHF技术。这一方案适用于16GB以上显存的GPU环境,为开发者提供了一种经济高效的大型语言模型定制途径。
RoleLLM-public - 评估与提升大语言模型角色扮演能力的框架
GithubRoleLLM基准测试大语言模型开源项目微调角色扮演
RoleLLM框架旨在评估和增强大语言模型的角色扮演能力。该框架包含RoleBench数据集、Context-Instruct知识提取方法、RoleGPT风格模仿技术和RoCIT微调策略。通过这些组件,RoleLLM显著提升了开源模型的角色扮演表现,在某些方面达到了与GPT-4相当的水平。这一框架为大语言模型在角色扮演任务中的应用提供了新的研究方向。
opus-mt-en-ru - 开源英俄翻译模型高性能机器翻译
BLEU评分GithubHuggingfaceopus-mt-en-ru开源项目机器翻译模型英俄翻译语言模型
opus-mt-en-ru是一个开源的英语到俄语机器翻译模型,基于transformer-align架构。该模型在newstest2012测试集上达到31.1的BLEU分数,展现出较好的翻译性能。模型使用OPUS数据集训练,采用normalization和SentencePiece进行预处理。此外,该项目还提供了多个测试集的评估结果,便于用户了解模型在不同场景下的表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号