Project Icon

RAGFoundry

开源框架增强大语言模型检索能力

RAG Foundry是一个开源框架,通过RAG增强数据集微调模型来提升大语言模型的外部信息检索能力。该框架包含数据集创建、模型训练、推理和评估四个模块,支持快速原型设计和RAG实验。其模块化设计和可定制工作流程,有助于研究人员和开发者高效改进LLM的检索增强生成能力。

rag-using-langchain-amazon-bedrock-and-opensearch - 基于Amazon Bedrock和OpenSearch构建检索增强生成系统
Amazon BedrockGithubLangChainOpenSearchRAGTitan开源项目
这个开源项目展示了如何使用Amazon Bedrock的Titan模型和OpenSearch的向量引擎来构建检索增强生成(RAG)系统。项目利用LangChain框架将嵌入文本存储在OpenSearch中,为语言模型提供更精准的上下文。开发者可以选择Amazon Bedrock提供的多种基础模型,包括Anthropic Claude和AI21 Labs的Jurassic系列。项目文档详细介绍了从OpenSearch集群部署到数据加载和查询的全过程,为有意实践RAG技术的开发者提供了完整的参考。
HippoRAG - 大型语言模型的神经生物学启发长期记忆框架
GithubHippoRAGRAG大语言模型开源项目神经生物学长期记忆
HippoRAG是一个借鉴人类长期记忆神经生物学原理的检索增强生成(RAG)框架。它能让大型语言模型持续整合外部文档知识,以较低的计算成本实现通常需要昂贵迭代LLM管道才能达成的功能。该框架兼容ColBERTv2和Contriever等检索模型,还可与IRCoT结合获得互补效果。HippoRAG为大型语言模型提供了一种高效的长期记忆解决方案,在提升模型性能的同时降低了计算资源需求。
ragflow - 基于深度文档理解的高效RAG工作流引擎
GithubLLMRAGFlow兼容异构数据源开源项目深度文档理解自动化RAG工作流程
RAGFlow是一个基于深度文档理解的开源RAG引擎,适用于各种规模的企业。结合大型语言模型,它提供可靠的问答功能和可信的引用。RAGFlow支持多种数据格式,包括文本、图片和音频文件,并且兼容本地和远程LLM,提供自动化、无缝集成的RAG工作流,便于通过直观的API进行业务整合。
rag-token-base - 基于检索增强生成的知识型自然语言处理模型
GithubHuggingfaceRAG开源项目检索增强生成模型生成器知识密集型NLP任务问题编码器
RAG-Token-Base是一个开源的自然语言处理模型,集成了问题编码器、检索器和生成器三个核心组件。模型采用DPR编码器和BART生成器架构,通过结合外部知识实现高质量的文本生成。其灵活的检索器配置功能使其适用于各类知识密集型的语言处理任务。
graphrag - 提升文本数据结构化处理能力的先进工具
AI生图GithubGraphRAGLLMs开源项目数据管道热门知识图谱隐私数据
GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。
Awesome-RAG - 深入探索RAG的最佳实践与常见挑战
全面了解Retrieval Augmented Generation (RAG),涵盖对话路由、LLM模型、向量检索、提示策略、生成、评估、性能与成本、隐私和安全等方面的实践与挑战。探索先进的RAG模式、多模态RAG、知识图谱和自动提示优化等技术,提升生成质量和可靠性。
text2vec-base-chinese-rag - 基于CoSENT框架的中文RAG文本嵌入模型
FAISSGithubHuggingfaceLangchainRAG向量检索开源项目模型自然语言处理
text2vec-base-chinese-rag采用CoSENT训练框架构建,专注于中文文本理解和RAG任务。模型支持文本相似度计算,集成Langchain和FAISS向量存储功能,实现高效文档检索。项目提供自定义LLM的RAG实现示例,便于开发者快速应用和扩展。
R2R - 在生产环境中构建、扩展和管理面向用户的检索增强生成应用程序
GithubR2RRetrieval-Augmented Generation多模态支持开源项目混合搜索知识图谱
R2R旨在弥合本地LLM实验与可扩展的生产级检索增强生成(RAG)应用之间的差距。R2R提供最新的RAG技术,基于RESTful API构建,使用简便。其主要功能包括多模态支持、混合搜索、图形RAG、应用管理、可观察性、可配置性和扩展性。通过R2R仪表板用户界面,可直观管理和分析RAG引擎性能。
RAG-Survey - RAG技术全面综述 基础方法、增强技术及未来方向
GithubRAG人工智能大语言模型开源项目检索增强生成自然语言处理
该研究对检索增强生成(RAG)技术进行了系统性调查和分类。文章全面总结了RAG的基础方法,包括基于查询、潜在表示和logit的技术,以及新兴的推测性RAG。同时深入探讨了RAG的多种增强策略,涵盖输入优化、检索器改进和生成器增强等关键方面。这份综述为AI领域的研究人员和开发者提供了RAG技术的最新进展概览,有助于把握未来研究方向。
CRUD_RAG - 全面评估中文检索增强生成系统的基准测试
CRUD-RAGGithub中文基准测试大语言模型开源项目检索增强生成评估系统
CRUD_RAG是一个全面的中文检索增强生成(RAG)系统评估基准。该项目包含36166个测试样本,覆盖CRUD操作,支持多种评估指标。CRUD_RAG提供原生中文数据集、评估任务和基线模型,并具备一键式评估功能。这一工具可助力研究人员和开发者全面评估和优化中文RAG系统性能,推动中文自然语言处理技术的进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号