Project Icon

RecTools

功能丰富的推荐系统开发Python库

RecTools是一个专为推荐系统开发设计的Python库。它集成了数据处理、指标计算、多种推荐模型和模型选择框架。支持矩阵分解、最近邻和神经网络等算法,并可利用用户和物品特征。RecTools注重易用性和灵活性,有助于快速构建和部署推荐系统。

recommenders - 从概念到部署推动推荐系统的发展的完整教程
GithubRecommenders内容过滤协同过滤开源项目推荐系统机器学习
Recommenders项目支持开发者和技术爱好者从概念到部署推动推荐系统的发展。项目提供完整的教程,包括数据准备、模型建立、评估和优化,通过丰富的Jupyter笔记本示例展示各种推荐算法的实际应用。
Transformers4Rec - 灵活高效的PyTorch兼容序列与会话推荐库
GithubHugging Face TransformersNLPPyTorchRecSysTransformers4Rec开源项目
Transformers4Rec是一个结合Hugging Face Transformers框架的高效库,专注于自然语言处理和推荐系统的结合。通过支持多种输入特征和模块化设计,它提供了与PyTorch兼容的高灵活性架构。集成NVTabular和Triton Inference Server,实现了全GPU加速的管道,优化了序列和会话推荐效果。其在业内竞赛中的优异表现展示了其在会话推荐任务中的高准确性。
rexmex - 推荐系统评估指标和报告工具库
Githubrexmex开源库开源项目推荐系统机器学习评估指标
rexmex是一个用于推荐系统评估的Python库,提供了全面的评估指标集合,涵盖排名、评分、分类和覆盖率等方面。该库集成了经典指标和最新数据挖掘研究成果,并提供报告生成和性能可视化功能。rexmex操作简便,适用于多种推荐系统场景,可帮助研究人员和开发者全面评估系统性能。
DeepRec - 基于TensorFlow的推荐系统框架 支持万亿级训练和优化
DeepRecGithub分布式训练开源项目推荐系统模型优化深度学习框架
DeepRec是一个基于TensorFlow的推荐系统深度学习框架。它支持万亿级样本和参数的分布式训练,提供嵌入变量、优化器等关键功能。该框架在CPU和GPU平台上进行了性能优化,包括运行时、算子和图级优化。DeepRec还支持增量检查点、分布式服务和在线学习等部署功能,为大规模推荐模型提供全面解决方案。
RePlay - 全周期推荐系统开发与评估框架
GithubRePlay开源项目推荐系统数据预处理模型评估超参数优化
RePlay是一个覆盖推荐系统全生命周期的开发评估框架。它集成了数据预处理、模型构建、参数优化、性能评估和模型集成等功能。该框架支持CPU、GPU等多种硬件,并可与PySpark结合实现分布式计算。RePlay能帮助开发者顺利将推荐系统从离线实验转到在线生产环境,提升系统的可扩展性和适应性。
recommenderlab - R语言推荐系统开发与评估框架
GithubR包recommenderlab协同过滤开源项目推荐系统评估框架
recommenderlab是一个用于开发和评估推荐系统的R语言框架。它支持用户-物品矩阵的稀疏表示,提供多种主流推荐算法,包括UBCF、IBCF、SVD、Funk SVD、ALS等。框架具备Top-N推荐、交叉验证、评分和二元数据处理等功能。recommenderlab还提供了训练/测试分割、MSE、RMSE、MAE等多种评估方法和指标,适用于电商、内容推荐等多个领域,为推荐系统研究和开发提供了全面的工具支持。
recommenders - 利用TensorFlow构建推荐系统模型的库
GithubKerasTensorFlow Recommenders开源项目推荐系统数据准备模型训练
TensorFlow Recommenders 是一款利用TensorFlow构建推荐系统模型的库。它涵盖了数据准备、模型构建、训练、评估和部署的完整工作流程,基于Keras,旨在为用户提供易学且灵活的体验,能够支持构建复杂模型。只需确保安装TensorFlow 2.x,并使用pip安装即可开始使用。详细的文档和教程能够帮助用户快速入门。
fun-rec - 系统化机器学习推荐算法教程与实战
FunRecGithub开源项目推荐系统机器学习算法工程师阿里天池
本教程适合具备机器学习基础、希望进入推荐算法领域的学习者,内容包括推荐系统概述、算法基础、实战项目和面经总结。系统化学习从基础到实战,助力面试成功。由多位热爱分享的同学整理,FunRec学习社区提供交流和技术支持。
LibRecommender - 推荐系统开源库 集成多种算法与完整工作流
GithubLibRecommender协同过滤开源项目推荐系统机器学习深度学习
LibRecommender是一个专注于端到端推荐流程的开源系统库。它实现了FM、DIN、LightGCN等多种流行算法,支持协同过滤和基于内容的混合推荐。该库具有低内存占用、支持冷启动和动态特征等优势,提供从数据处理到模型训练、评估和部署的完整工作流。其API设计统一友好,适用于多种推荐场景。
RLMRec - 融合大语言模型的推荐系统表示学习框架
GithubRLMRec协同过滤大语言模型开源项目推荐系统表示学习
RLMRec是一个模型无关的推荐系统框架,利用大语言模型增强表示学习。该框架整合表示学习与大语言模型,深入捕捉用户行为和偏好的语义特征。RLMRec引入辅助文本信息,构建大语言模型支持的用户和物品画像,并通过跨视图对齐方法整合语义空间和协同关系信号。在多个公开数据集的评估中,RLMRec展现出显著的性能提升。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号