Project Icon

Pytorch-Medical-Segmentation

基于PyTorch的医学图像分割框架 支持2D和3D多模态分析

Pytorch-Medical-Segmentation是一个开源医学图像分割框架,支持2D和3D多模态分析。该项目集成多种先进算法,兼容主流医学影像格式,提供灵活配置选项。内置训练推理流程和评估指标,便于研究人员和开发者快速实现各类医学图像分割任务。

x-unet - 集成高效注意力机制的先进U-Net框架
GithubU-Net图像分割开源项目深度学习神经网络计算机视觉
x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。
torchmd - 开源分子动力学模拟框架
GithubPyTorchTorchMD分子动力学力场开发开源项目神经网络势能
TorchMD是一个开源的分子动力学模拟框架,基于PyTorch构建。它为研究人员提供简单易用的API,支持力场开发和神经网络势能的无缝集成。TorchMD使用与传统MD软件兼容的化学单位,适用于多种分子模拟任务。该项目正在积极开发中,由Chan Zuckerberg Initiative和Acellera资助,并与OpenMM和ACEMD展开合作。TorchMD适用于蛋白质折叠、药物设计、材料科学等领域的分子动力学研究。研究人员可以利用TorchMD快速开发和测试新的力场模型,推进计算化学和生物物理学的发展。
TransMorph_Transformer_for_Medical_Image_Registration - 基于Transformer的无监督医学图像配准方法
GithubPyTorchTransMorphTransformer医学影像配准开源项目深度学习
TransMorph是一个利用Transformer架构进行无监督医学图像配准的开源项目,结合了Vision Transformer和Swin Transformer技术。提供多个模型变体和多种损失函数,支持单模态和多模态配准,公开了训练脚本和预训练模型,并在MICCAI 2021 L2R挑战中表现出色。
SLANTbrainSeg - 全脑高分辨率MRI深度学习分割工具
GithubSLANT医学影像开源项目深度学习神经影像学脑部分割
SLANTbrainSeg是一款开源的全脑高分辨率MRI分割工具,采用人工智能深度学习技术。它可将T1 MRI扫描分割为133个标签,符合BrainCOLOR协议。项目提供Docker镜像,支持GPU和CPU,操作简便。SLANTbrainSeg在分割精度和效率上表现出色,适用于神经影像研究和临床分析。
SAM-Adapter-PyTorch - 提升复杂场景下图像分割效果的开源项目
GithubICCVPyTorchPythonSAM-AdapterSegment Anything开源项目
SAM-Adapter项目提升了SAM在伪装、阴影和医疗图像分割中的表现。最新的更新支持更强大的SAM2骨干网络,并提供多种预训练模型和数据集下载链接,便于快速上手。该项目在IEEE/CVF国际计算机视觉会议上展示,并包含详细的环境配置和训练指南,方便研究人员进行深度学习任务。
pytorch_connectomics - PyTorch Connectomics加速大脑神经连接图谱构建
GithubPyTorch Connectomics图像分割开源项目深度学习框架神经连接重建连接组学
PyTorch Connectomics是一个面向神经科学领域的开源深度学习框架,专门用于处理电子显微镜采集的大脑图像数据。该框架支持连接组学中的自动和半自动语义及实例分割,提供多任务学习、主动学习和半监督学习功能。它采用分布式和混合精度优化技术,能高效处理大规模数据集。框架包含多种编码器-解码器架构,如定制3D UNet和特征金字塔网络模型,并提供全面的体积数据增强功能。由哈佛大学视觉计算组维护,PyTorch Connectomics致力于加速大脑神经连接图谱的重建过程。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
deformableLKA - 变形大核注意力机制提升医学图像分割效果
3D分割D-LKA NetDeformable Large Kernel AttentionGithubVision Transformer医学图像分割开源项目
变形大核注意力(D-LKA Attention)是一种新型医学图像分割方法。它通过大型卷积核高效处理图像数据,并使用可变形卷积适应不同数据模式。该方法有2D和3D两个版本,尤其是3D版本在处理跨层数据时表现优异。基于此技术开发的D-LKA Net架构在多个医学分割数据集上的表现超过了现有方法,展现了其在医学图像分析领域的潜力。
SAM4MIS - 医学图像分割技术的前沿进展
GithubSAM人工智能医学图像分割开源项目深度学习计算机视觉
SAM4MIS项目综述了Segment Anything Model (SAM)和SAM2在医学图像分割领域的应用进展。该项目涵盖了从经验评估到方法改进的全面研究成果,为医学图像分割提供了最新见解。通过持续跟踪和汇总SAM相关研究,SAM4MIS为医学图像分析研究提供了重要参考,促进了该领域技术的创新。
Mesh_Segmentation - 3D网格分割与特征提取技术发展概览
Githubmesh processing分割开源项目深度学习特征提取计算机图形学
本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号