Project Icon

RecSysDatasets

推荐系统公开数据集汇总及处理工具

RecSysDatasets是一个汇总公开推荐系统数据集的开源项目。该项目收集了电商、广告、电影等多个领域的数据集,并提供将数据集转换为统一格式的工具。这有助于研究人员更便捷地获取和使用各类推荐系统数据集,为算法开发和评估提供支持。项目与RecBole推荐系统库集成,便于进行算法测试。

EasyRec - 开源深度学习推荐系统框架
EasyRecGithub大规模模型开源项目推荐系统深度学习自动化
EasyRec是一个开源的推荐系统框架,集成了多种深度学习模型,用于候选生成、评分和多任务学习等推荐任务。该框架支持多种运行平台和数据输入方式,提供简单配置、智能功能和丰富的模型选择。EasyRec通过简化配置和超参数调优,提高了高性能模型的生成效率。它还支持大规模部署、自定义开发和快速向量检索,适用于多种推荐场景。
LibRecommender - 推荐系统开源库 集成多种算法与完整工作流
GithubLibRecommender协同过滤开源项目推荐系统机器学习深度学习
LibRecommender是一个专注于端到端推荐流程的开源系统库。它实现了FM、DIN、LightGCN等多种流行算法,支持协同过滤和基于内容的混合推荐。该库具有低内存占用、支持冷启动和动态特征等优势,提供从数据处理到模型训练、评估和部署的完整工作流。其API设计统一友好,适用于多种推荐场景。
RLMRec - 融合大语言模型的推荐系统表示学习框架
GithubRLMRec协同过滤大语言模型开源项目推荐系统表示学习
RLMRec是一个模型无关的推荐系统框架,利用大语言模型增强表示学习。该框架整合表示学习与大语言模型,深入捕捉用户行为和偏好的语义特征。RLMRec引入辅助文本信息,构建大语言模型支持的用户和物品画像,并通过跨视图对齐方法整合语义空间和协同关系信号。在多个公开数据集的评估中,RLMRec展现出显著的性能提升。
RecBole-GNN - 图神经网络推荐算法开源库
GithubPyTorchRecBole-GNN图神经网络开源库开源项目推荐系统
RecBole-GNN是一个开源的图神经网络推荐算法库,基于PyTorch和RecBole构建。该库专注于复现和开发GNN推荐算法,涵盖通用、序列和社交推荐三大类别。它提供统一API、高效图处理模块和丰富的算法库,支持多种前沿GNN推荐模型。RecBole-GNN还提供详细的性能对比,为研究人员提供便捷的GNN推荐算法开发和评估平台。
recommenders - 从概念到部署推动推荐系统的发展的完整教程
GithubRecommenders内容过滤协同过滤开源项目推荐系统机器学习
Recommenders项目支持开发者和技术爱好者从概念到部署推动推荐系统的发展。项目提供完整的教程,包括数据准备、模型建立、评估和优化,通过丰富的Jupyter笔记本示例展示各种推荐算法的实际应用。
MMRec - 现代多模态推荐系统研究工具箱
GithubMMRec图神经网络多模态推荐开源项目推荐系统深度学习
MMRec是一个现代化的多模态推荐系统工具箱,支持多种先进推荐模型,如图神经网络和自监督学习技术。它提供全面功能,包括数据预处理、模型训练和评估,便于研究人员高效开发和比较推荐算法。该工具箱配有详细文档和示例,适合快速上手和扩展研究。
DeepRec - 基于TensorFlow的推荐系统框架 支持万亿级训练和优化
DeepRecGithub分布式训练开源项目推荐系统模型优化深度学习框架
DeepRec是一个基于TensorFlow的推荐系统深度学习框架。它支持万亿级样本和参数的分布式训练,提供嵌入变量、优化器等关键功能。该框架在CPU和GPU平台上进行了性能优化,包括运行时、算子和图级优化。DeepRec还支持增量检查点、分布式服务和在线学习等部署功能,为大规模推荐模型提供全面解决方案。
fun-rec - 系统化机器学习推荐算法教程与实战
FunRecGithub开源项目推荐系统机器学习算法工程师阿里天池
本教程适合具备机器学习基础、希望进入推荐算法领域的学习者,内容包括推荐系统概述、算法基础、实战项目和面经总结。系统化学习从基础到实战,助力面试成功。由多位热爱分享的同学整理,FunRec学习社区提供交流和技术支持。
datasets - 公共数据集下载和准备的实用库
GithubMNISTTensorFlow Datasetstf.data.Dataset定制化开源项目性能
TensorFlow Datasets是一个公共数据集下载和准备的实用库,简化数据集加载与处理。通过其API,用户可以访问和使用多个预构建数据集,优化训练管道性能,并确保数据的确定性与可重复性。详情请参考官方教程、指南及API文档,支持在Colab笔记本中交互式操作。此工具适合快速集成数据集与进行机器学习模型训练的开发者。
awesome-public-datasets - 多领域高质量公共数据集资源汇总
Github基因组学开源数据集开源项目微阵列数据生物学蛋白质数据库
Awesome Public Datasets汇集了农业、生物学、计算机科学等多个领域的高质量公共数据集。该项目源于上海交通大学OMNILab,现隶属于BaiYuLan开放AI社区。它为研究人员和数据科学家提供了便捷获取开放数据资源的途径,支持各类分析和研究工作。资源列表涵盖广泛,质量可靠,是数据科学工作的重要参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号