Project Icon

Monkey

利用高分辨率图像和优质文本标签增强多模态模型性能

Monkey是一个开源的多模态大模型项目,通过提高图像分辨率和优化文本标签来改善模型性能。该项目在MMBench、CCBench和MME等基准测试中表现优异。Monkey提供完整的模型定义、训练代码和演示系统,支持离线和在线部署。此外,项目还开源了多级描述生成数据集,并提供了针对多个视觉问答数据集的评估工具,方便研究人员进行实验和改进。

MMBench - 全面评估多模态大模型能力的基准测试
GithubMMBench多模态模型开源项目循环评估视觉语言模型评估基准
MMBench是评估视觉语言模型多模态理解能力的基准测试集。它包含近3000道多项选择题,涵盖20个能力维度,采用循环评估和LLM选项提取等创新方法,提供可靠客观的评估。通过细粒度的能力测试和可重复的评价标准,MMBench为多模态模型开发提供了有价值的反馈。
序列猴子 - 灵活多轮交互与多模态语言处理,驱动企业智能化升级
AI工具AI开发图片生成序列猴子文本生成模型训练热门视频生成语音识别
序列猴子开放平台借助其超大规模语言模型,有效支持多模态的语音、文本、和图像处理。此平台通过其卓越的语言理解与生成技术,优化企业流程,加速智能化转型,实现用户体验与业务效率的双重提升。
Video-MME - 全面评估多模态大语言模型视频分析能力的基准
GithubVideo-MME人工智能基准评估多模态大语言模型开源项目视频分析
Video-MME是一个创新的多模态评估基准,用于评估大语言模型的视频分析能力。该项目包含900个视频和2,700个人工标注的问答对,覆盖多个视觉领域和时间跨度。其特点包括视频时长多样性、类型广泛性、数据模态丰富性和高质量标注。Video-MME为研究人员提供了一个全面评估多模态大语言模型视频理解能力的工具。
chameleon - 多模态早期融合基础模型的开源实现
AI研究GithubMeta Chameleon可视化工具多模态模型开源项目模型推理
Chameleon是Meta AI开发的多模态早期融合基础模型。项目提供GPU推理实现、浏览器端多模态输入输出查看工具和评估提示。开源内容包括模型代码、权重和数据集,支持多模态AI技术研究与应用。Chameleon能够在文本、图像等多种模态间实现高效融合和理解。
MultiBench - 多模态学习的多尺度标准基准
BenchmarkGithubMultiBenchMultimodal学习开源项目数据集深度学习
MultiBench是一个系统化、统一的大规模基准,用于多模态表征学习,覆盖15个数据集、10种模态、20个预测任务和6个研究领域。它提供自动化的端到端机器学习管道,简化数据加载、实验设置和模型评估,确保在真实世界中的适用性和鲁棒性。
MultiModalMamba - 处理文本与图像的多模态AI模型
AI模型GithubMambaMultiModalMambaVision TransformerZeta开源项目
MultiModalMamba 是一个结合 Vision Transformer 和 Mamba 的高性能多模态 AI 模型,基于简洁强大的 Zeta 框架。它可以同时处理文本和图像数据,适用于各种 AI 任务,并支持定制化设置。MultiModalMamba 提供高效数据处理和多种数据类型融合,优化您的深度学习模型表现。
MMVP - 探索多模态大语言模型的视觉局限
GithubInterleaved-MoFMMVP基准测试多模态LLM开源项目视觉模式视觉能力
MMVP基准测试揭示了多模态大语言模型在视觉理解方面的局限。即使是顶尖模型也难以准确完成基本视觉定位任务。项目开发的Interleaved-MoF模型旨在改善这些问题。MMVP还提供了开放的评估工具和数据集,为多模态AI技术的发展做出了贡献。
MMStar - 大型视觉语言模型评估的新标准
GithubMMStar人工智能基准测试多模态评估开源项目视觉语言模型
MMStar是一个创新的多模态评估基准,包含1500个精选的视觉关键样本。它解决了现有评估中的视觉冗余和数据泄露问题,提高了多模态性能评估的准确性。MMStar涵盖6大核心能力和18个细分维度,每个核心能力均衡分配250个样本。项目提供评估工具、数据集和在线排行榜,为视觉语言模型研究指明新方向。
Macaw-LLM - 多模态数据与语言模型的前沿整合技术
GithubMacaw-LLM图像集成多模态语言模型开源项目文本处理视频处理
Macaw-LLM项目通过整合图像、视频、音频和文本数据,创新了多模态语言建模。该项目基于CLIP、Whisper和LLaMA等先进模型,实现了高效的数据对齐和一步到位的指令微调,创建了丰富的多模态指令数据集,涵盖多种任务。项目强调简单快速的对齐策略,展示出强大的多模态处理能力,有效提升了跨模态数据的解析和理解。
Q-Bench - 评测多模态大语言模型的低层视觉能力
GithubICLR2024Q-Bench低层视觉基准测试多模态大语言模型开源项目
Q-Bench是一个评估多模态大语言模型低层视觉能力的基准测试。它通过感知、描述和评估三个领域,使用LLVisionQA和LLDescribe数据集测试模型性能。该项目采用开放式评估框架,支持研究者提交结果或模型。Q-Bench对比了开源和闭源模型的表现,并与人类专家水平进行对照,为深入理解和提升多模态AI的基础视觉处理能力提供了关键洞察。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号