Project Icon

LaRa

大基线辐射场技术实现突破性进展

LaRa项目开发了创新的大基线辐射场技术,提高了3D重建效率和质量。通过支持半精度训练,该技术实现了收敛速度提升100%以上,性能增益约1.5dB。LaRa能从多视图、文本和单视图输入重建辐射场,在计算效率和重建质量方面取得了显著进展,为3D重建和渲染领域开辟了新途径。

Canopus-LoRA-Flux-UltraRealism-2.0 - 超高真实感图像生成的创新提升
Canopus-LoRA-Flux-UltraRealism-2.0GithubHuggingfaceLoRA图像生成开源项目模型超现实主义面部真实感
这个项目在图像生成领域通过使用LoRA技术在超高真实感方面展现了进步。其特别专注于人脸的真实感生成,并能够与多种模型如Flux和Stable Diffusion兼容使用。使用关键字'Ultra realistic',可以实现更逼真的图像生成体验。虽然模型仍在训练阶段,但已经展示了很好的细节处理能力,特别适合对高分辨率图像处理有要求的用户,可免费下载模型权重。
LLaVA-HR - 混合分辨率适应技术助力多模态大模型
GithubLLaVA-HR多模态大语言模型开源项目视觉语言任务高分辨率
LLaVA-HR是一个采用混合分辨率适应技术的多模态大语言模型。它支持1536x1536的高分辨率图像输入,提高了细粒度视觉语言任务的性能。该模型在保持与LLaVA-1.5相近训练成本的同时,在多个基准测试中表现出色。LLaVA-HR为研究社区提供了一个新的基线,展示了混合分辨率适应方法在提升多模态模型性能方面的潜力。
LightGaussian - 高效压缩3D高斯模型 实现15倍存储减少和200+FPS渲染
3D高斯压缩GithubLightGaussian开源项目渲染优化神经渲染计算机图形学
LightGaussian项目开发了一种新型3D高斯模型压缩方法。该方法结合了剪枝、恢复、SH蒸馏和VecTree量化技术,实现了15倍的存储压缩,同时保持200+FPS的渲染速度。在保持图像质量的前提下,LightGaussian显著减小了模型体积,为实时3D场景渲染和AR/VR应用开辟了新途径。项目提供了开源代码、使用指南和示例,便于研究人员和开发者进行深入研究和应用开发。
lightplane - 内存高效的神经3D场景渲染框架
3D渲染GPU优化GithubLightplane内存效率开源项目神经场景表示
Lightplane是一个内存高效的神经3D场景渲染框架,包含可微分辐射场渲染器和特征投影模块。它能以不到1GB的GPU内存渲染全高清图像批次,保持与现有方法相当的渲染和反向传播速度。框架包含Lightplane渲染器和投影器两个主要组件,均采用优化的GPU内核实现。Lightplane具有高内存效率和可扩展性,易于扩展和使用,能显著提升神经场方法的应用规模。
VisionLLaMA - 基于LLaMA的统一视觉模型,为图像生成和理解设立新基准
GithubVisionLLaMA图像理解图像生成开源项目计算机视觉预训练模型
VisionLLaMA是一个基于LLaMA架构的统一视觉Transformer模型,专为处理2D图像而设计。该模型提供平面和金字塔两种形式,适用于广泛的视觉任务,包括图像感知和生成。通过各种预训练范式的广泛评估,VisionLLaMA在多项图像生成和理解任务中展现出卓越性能,超越了现有最先进的视觉Transformer模型,为计算机视觉领域提供了新的基准。
Real-Time-Latent-Consistency-Model - 实时潜在一致性模型,支持多种图像转换管道
CUDAControlNetDiffusersGithubLatent Consistency ModelLoRA开源项目
此项目展示了使用Diffusers进行图像转换的实时潜在一致性模型(LCM),支持img2img、txt2img、ControlNet等多种管道。需要CUDA和Python 3.10等环境支持,提供详细的安装指南和使用示例。LCM + LoRAs可以在极少步骤内完成推理,加快处理速度。项目支持Docker部署,并提供不同平台的实时演示链接。
RayDiffusion - 射线扩散模型在相机姿态估计中的应用
GithubRayDiffusion开源项目扩散模型深度学习相机姿态估计计算机视觉
RayDiffusion项目提出了一种将相机表示为射线并应用扩散模型的姿态估计方法。该方法支持已知边界框和从掩码自动提取边界框两种模式,同时提供射线回归选项。项目包含代码实现、预训练模型和使用说明,适用于计算机视觉领域的研究和开发。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
flux-RealismLora - Flux模型写实效果增强工具:LoRA微调技术应用
ComfyUIFLUX.1-devGithubHuggingfaceLoRA图像生成开源项目模型模型微调
flux-RealismLora项目为FLUX.1-dev模型提供LoRA微调功能,旨在提升图像生成的写实效果。XLabs AI团队开发的这一工具包含训练脚本和配置文件,支持LoRA和ControlNet微调技术。项目采用特定格式的图像数据集进行训练,并可与ComfyUI工作流程无缝集成。遵循FLUX.1 [dev]非商业许可证,flux-RealismLora为增强Flux模型的写实能力提供了实用解决方案。
OpenLRM - 开源3D重建模型
GithubHugging FaceOpenLRM开源开源项目模型训练视觉重建
OpenLRM是一个开源项目,专注于将单张图像转换为三维模型,提供预训练模型、训练代码和工具。用户可访问Hugging Face平台上的模型和演示。最新版本v1.1.1支持Objaverse和MVImgNet数据集,并进行了代码重构以提升可用性和扩展性。项目还包含安装指南、推理脚本和训练配置文件,便于用户快速上手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号