Project Icon

d2l-ai-solutions-manual

《动手学深度学习》习题解答与代码实现

该项目为《动手学深度学习》一书提供全面的习题解答。内容包括详细的代码实现和运行截图,涵盖从预备知识到自然语言处理的各个章节。项目提供在线阅读、环境配置指南和协作规范,旨在帮助初学者更好地理解和实践深度学习概念。作为学习补充资料,本项目特别适合希望将理论知识应用于实践的学习者。

mlcourse.ai - 综合性机器学习在线课程 理论实践并重
GithubOpenDataSciencemlcourse.ai开源项目数据分析机器学习课程算法
mlcourse.ai是OpenDataScience推出的开放式机器学习课程,涵盖数据分析到梯度提升等10个主题。课程通过理论讲解与实践作业相结合,帮助学习者掌握机器学习技能。提供多语言学习资源,包括文章、视频和编程作业,支持自定进度学习。另有付费作业包供选择,进一步提升学习效果。
ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
GithubMachine LearningPythonReinforcement LearningSupervised LearningUnsupervised Learning开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
deep-learning-for-image-processing - 涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练的介绍深度学习在图像处理中的应用的教程
GithubPytorchTensorflow图像分类图像处理开源项目深度学习
本教程介绍深度学习在图像处理中的应用,涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练。课程内容包括图像分类、目标检测、语义分割、实例分割和关键点检测,适合研究生和深度学习爱好者。所有PPT和源码均可下载,助力学习和研究。
how-to-read-pytorch - 通俗易懂的PyTorch核心概念教程 从张量运算到数据加载的全面指南
GPU计算GithubPyTorch开源项目深度学习神经网络自动求导
该项目是一个PyTorch核心概念教程系列,包含5个Jupyter notebook。教程内容涵盖张量运算、自动求导、优化器、网络模块和数据加载等PyTorch关键主题。每个主题提供详细说明和可运行示例代码,旨在帮助开发者理解PyTorch的运行模型和高效GPU编程。所有notebook支持在Google Colab上免费运行,便于实践学习。
ai_projects - 多领域机器学习项目开源仓库
AI项目GitHubGithubMiguel Fierro开源项目机器学习深度学习
ai_projects是一个涵盖多个机器学习领域的开源项目仓库。内容包括CNN、转移学习、推荐系统和自然语言处理等主题。每个项目都配有Jupyter笔记本和相关博客文章,为开发者和研究者提供实践资源。仓库定期更新,展示AI技术在实际应用中的最新进展。
the-incredible-pytorch - PyTorch资源,包括教程、项目及工具库等
GithubPyTorch开源项目教程机器学习深度学习神经网络
详尽解析PyTorch生态系统!本项目集成了丰富的教程、库和视频资源,全面覆盖从基本知识到先进技术的不同需求。无论涉及数据可视化、对象检测或模型优化,均提供细致入微的资源,帮助各层次开发者提升机器学习实力。
python-machine-learning-book-3rd-edition - Python与机器学习代码实例——从基础到高级应用
GithubPython Machine LearningTensorFlowscikit-learn开源项目数据处理机器学习
《Python Machine Learning》第三版全面覆盖了数据预处理、分类、回归、深度学习和强化学习等机器学习领域的核心概念。书中提供了Scikit-Learn和TensorFlow的代码示例,帮助读者掌握模型评估、超参数优化和集成学习等技术。本书适合初学者和进阶用户,通过代码仓库可以获得丰富的实践经验。出版信息:Packt Publishing, 2019年12月12日,ISBN-13: 978-1789955750。
MLQuestions - 65个机器学习面试问题助您备战2024年技术面试
Github开源项目机器学习深度学习神经网络计算机视觉面试问题
MLQuestions项目收录65个机器学习和计算机视觉工程师技术面试问题。涵盖偏差-方差权衡、卷积神经网络等主题,并新增自然语言处理问题。提供在线课程和推荐书籍等准备资源。问题内容包括机器学习基础、深度学习技术和计算机视觉算法,适合求职者全面备战2024年技术面试。
Generative_Deep_Learning_2nd_Edition - 生成深度学习的核心技术,包括变分自编码器、生成对抗网络和变压器模型的教程
DockerGenerative Deep LearningGithubTensorboard开源项目深度学习生成对抗网络
探索生成深度学习的核心技术,包括变分自编码器、生成对抗网络和变压器模型。提供详细的Docker和Kaggle教程,帮助用户轻松学习和训练模型。本书涵盖从基础理论到高级应用的完整知识体系,适用于音乐生成、世界模型等领域的实践。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号