Project Icon

d2l-ai-solutions-manual

《动手学深度学习》习题解答与代码实现

该项目为《动手学深度学习》一书提供全面的习题解答。内容包括详细的代码实现和运行截图,涵盖从预备知识到自然语言处理的各个章节。项目提供在线阅读、环境配置指南和协作规范,旨在帮助初学者更好地理解和实践深度学习概念。作为学习补充资料,本项目特别适合希望将理论知识应用于实践的学习者。

MachineLearning-AI - 250天AI和机器学习实践项目 涵盖计算机视觉到优化算法
Github人工智能优化算法开源项目机器学习深度学习计算机视觉
该项目记录250天的人工智能和机器学习实践,涉及计算机视觉、深度学习、图神经网络等多个领域。同时探索蚁群优化、粒子群优化等算法。项目展示从基础到前沿的AI应用,提供丰富的代码实例和学习资源。
dl-engineer-guidebook - 介绍深度学习工程师所需的知识, 硬件配置与软件环境详解
GithubLinux命令Python环境macOS环境开源项目深度学习深度学习工作站
本指南详细介绍深度学习工程师所需的知识,包括深度学习工作站配置、操作系统选择和硬件推荐、macOS和Ubuntu环境搭建与优化、Python环境设定、常用Linux命令等。还涵盖CV学习资源及数据集、经典预训练模型和TensorBoard的使用方法,助力工程师在深度学习领域发展。
pytorch-doc-zh - PyTorch深度学习库中文文档与教程,支持GPU和CPU优化
GPUGithubPyTorchtensor库中文文档开源项目深度学习
提供最新的PyTorch中文文档与教程,涵盖深度学习和张量优化,支持GPU和CPU。包括2.0版本中文翻译、最新英文教程和文档,以及丰富的学习资源和社区支持,适合希望深入了解和使用PyTorch的中文用户。
computer-vision-in-action - 计算机视觉实战指南:涵盖基础理论及前沿技术
CharmveGithubL0CVMaiwei AI Lab开源项目机器学习计算机视觉
本项目提供全面且前沿的计算机视觉学习资源,涵盖深度学习基础、神经网络模型及其优化方法。核心内容包括卷积神经网络、循环神经网络以及现代技术如Transformer、强化学习和迁移学习。通过实战项目和详细的代码实现,用户可以学习图像分类、目标检测、语义分割和3D重建等应用。此外,项目提供在线运行的notebook,简化本地调试过程。
Deep-Learning-Projects - Jupyter notebook深度学习项目集合与实践指南
GitHubGithubJupyter Notebook开源项目教程深度学习项目
Deep-Learning-Projects是一个包含多个深度学习小项目的GitHub仓库,以Jupyter notebook形式呈现。仓库提供详细的项目说明和配套视频教程,涵盖多个深度学习领域。这些资源为不同水平的学习者和开发者提供了实践机会,有助于从理论到实践的学习过程。
leedl-tutorial - 覆盖深度学习基础与高级知识的教程
GithubLeeDL-Tutorial台湾大学开源项目机器学习李宏毅深度学习
李宏毅教授的深度学习教程,基于《机器学习》(2021年春)并进行了优化,涵盖卷积神经网络、生成模型和自监督学习等多个领域。教程通过详细推导和重点讲解,降低了学习难度,适合中文学习者入门深度学习。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
100-Days-Of-ML-Code - 100天机器学习编程
Github开源项目支持向量机机器学习神经网络线性回归逻辑回归
100-Days-Of-ML-Code项目通过每天的编程挑战带领学习者深入机器学习领域。覆盖从数据预处理到复杂算法的全面教程,项目内容涵盖线性回归、逻辑回归到决策树等多种算法,每日实践确保理论与实战结合。适合任何级别的开发者提升机器学习技能。
computervision-recipes - 计算机视觉领域的实用示例和指南,涵盖面部识别、图像识别等多种视觉任务
AzureGithubPyTorch图像识别开源项目模型部署计算机视觉
computervision-recipes为数据科学家和机器学习工程师提供计算机视觉领域的实用示例和指南,涵盖面部识别、图像识别等多种视觉任务,并便利地利用先进库加速从概念到实现的全过程,并在云端实现模型训练与部署。
awesome-deep-learning - 开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等
Github人工智能大数据开源项目机器学习深度学习神经网络
awesome-deep-learning提供全面的开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等,适合各阶段学习者深入探索。通过更新最新技术和理论,推动知识和技术的不断进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号