Project Icon

ELYZA-japanese-Llama-2-7b-instruct

Llama-2架构的日语大语言模型 支持双语对话和指令微调

ELYZA-japanese-Llama-2-7b是基于Llama-2架构开发的日语大语言模型。通过额外预训练,该模型显著提升了日语处理能力。项目提供多个版本,包括基础模型和指令微调版本,参数规模在6.27B至6.37B之间。模型支持日英双语对话,适用于文本生成和对话等任务。项目还提供了基于Hugging Face Transformers框架的使用示例代码,方便开发者集成和部署。

Llama-3-Taiwan-8B-Instruct - 基于Llama-3架构的大规模双语语言模型 专注中英文处理
GithubHuggingfaceLlama-3-Taiwan中文对话人工智能大型语言模型开源项目模型深度学习
Llama-3-Taiwan-8B是基于Llama-3架构开发的大规模双语语言模型,采用繁体中文和英文高质量语料进行训练。模型在法律、制造、医疗和电子等专业领域进行优化,支持8K上下文长度。通过繁体中文NLP基准测试验证,可应用于对话、生成、推理等多个场景。
Meta-Llama-3-70B-Instruct - Meta开发的700亿参数指令微调大语言模型用于对话和生成
GithubHuggingfaceLlama 3Meta人工智能大型语言模型开源项目模型自然语言处理
Meta-Llama-3-70B-Instruct是Meta公司开发的700亿参数大语言模型,经指令微调优化对话能力。模型支持8k上下文长度,采用GQA架构提升推理效率。在多项基准测试中表现出色,具有良好的实用性和安全性。该模型可用于构建对话助手等自然语言生成任务,支持商业和研究用途。模型提供商业许可,可通过Transformers或原生llama3代码库使用。
Llama-3.2-3B-Instruct - Meta开发的多语言对话和任务型AI模型
GithubHuggingfaceLlama 3.2Unsloth大语言模型开源开源项目模型模型微调
Llama-3.2-3B-Instruct是Meta公司开发的多语言大型语言模型,专为对话和任务处理而优化。该模型支持8种主要语言,在行业基准测试中表现出色。采用优化的Transformer架构,结合监督微调和人类反馈强化学习技术,Llama-3.2系列模型具备强大的推理能力和应用灵活性,适用于广泛的对话和任务处理场景。
Llama-3.2-1B-Instruct - Meta开发的多语言大规模语言模型 适用于对话和检索任务
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B-Instruct是Meta开发的新一代多语言大规模语言模型。该模型支持8种语言,包括英语、德语和法语等,有1B和3B两种参数规模。模型采用优化的Transformer架构,使用高达9T的token训练,支持128k上下文长度。它在行业基准测试中表现优异,特别擅长对话、知识检索和摘要任务。Llama-3.2-1B-Instruct适用于构建智能助手、写作辅助等多种商业和研究应用。
Llama-3.2-11B-Vision-Instruct - 高效训练和部署具有多语言能力的大规模语言模型
GithubHuggingfaceLlama 3.2MetaUnsloth大语言模型开源项目模型模型微调
Llama-3.2-11B-Vision-Instruct是Meta开发的多语言大规模视觉语言模型,具备强大的对话和图像理解能力。该项目采用Unsloth技术,实现训练速度提升2.4倍,内存使用减少58%。模型支持英语、德语、法语等多种语言,适用于对话、检索、摘要等任务。项目提供简单易用的Colab笔记本,方便开发者进行模型微调和部署。Llama-3.2系列在多项行业基准测试中表现出色,超越了许多开源和闭源的对话模型。
Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
Llama-3.1-70B-Instruct - Meta推出的多语言大规模语言模型 支持商业与研究应用
GithubHuggingfaceMeta-Llama-3.1-70B多语言大语言模型开源项目指令微调模型预训练
Llama-3.1-70B-Instruct是Meta开发的多语言大型语言模型,支持8种语言,具有128k上下文窗口。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练,提升对话效果。支持文本和代码生成等自然语言任务,适用于商业和研究领域。该模型还可用于改进其他AI模型,包括合成数据生成和知识蒸馏。
Meta-Llama-3.1-8B - 开源支持128K上下文的多语言大规模语言模型
GithubHuggingfaceLlama 3.1人工智能模型多语言支持大语言模型开源项目机器学习模型
Meta Llama 3.1是新一代多语言大规模语言模型系列,提供8B、70B和405B三种参数规模。模型采用优化的Transformer架构,通过SFT和RLHF提升对话能力。支持8种语言,具有128K上下文窗口,基于15T+训练数据。采用GQA技术优化推理性能,适用于商业和研究领域的文本生成任务,知识截至2023年12月。
Llama-3.1-70B - Meta Llama 3.1 突破性多语言大模型 支持128K上下文
GithubHuggingfaceMeta人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta推出的最新多语言大型语言模型系列,包含8B、70B和405B三种参数规模。模型采用优化的Transformer架构并经指令微调,在多语言对话场景中表现卓越。Llama 3.1具备128K上下文窗口,能够生成文本和代码,广泛适用于商业和研究领域。在众多行业基准测试中,Llama 3.1展现出优异性能,超越了大量主流开源和专有对话模型。
Llama-3.2-3B - Meta推出Llama 3.2多语言大型语言模型系列
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,包括英语和德语。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练而成。它可用于对话、知识检索和摘要等任务,具有128K的上下文长度,并使用分组查询注意力机制提高推理效率。Llama-3.2-3B适用于商业和研究用途,可进一步微调以适应各种自然语言生成任务。模型遵循Llama 3.2社区许可协议。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号