Project Icon

u-net

使用Keras库构建深度神经网络的教程

本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。

leedl-tutorial - 覆盖深度学习基础与高级知识的教程
GithubLeeDL-Tutorial台湾大学开源项目机器学习李宏毅深度学习
李宏毅教授的深度学习教程,基于《机器学习》(2021年春)并进行了优化,涵盖卷积神经网络、生成模型和自监督学习等多个领域。教程通过详细推导和重点讲解,降低了学习难度,适合中文学习者入门深度学习。
nn-zero-to-hero - 神经网络与深度学习实践教程 从基础到GPT模型构建
GPTGithubPyTorch开源项目机器学习深度学习神经网络
该项目提供了一系列神经网络课程视频和实践代码,涵盖从基础概念到GPT模型构建的全过程。课程内容包括反向传播、语言建模、多层感知器和批量归一化等主题,每个讲座配有Jupyter笔记本和练习。适合具备Python基础的开发者深入学习神经网络和深度学习技术。
visualkeras - 直观展示Keras和TensorFlow神经网络架构的Python可视化库
GithubKerasPython包TensorFlowvisualkeras开源项目神经网络可视化
visualkeras是一个用于可视化Keras和TensorFlow神经网络架构的Python库。它支持分层和图形两种架构生成样式,适用于CNN和前馈网络等多种模型。该库提供灵活的样式定制选项,包括生成图例、自定义颜色映射和隐藏特定层。用户可以通过多种参数控制图层间距、缩放和维度显示。visualkeras为神经网络架构的可视化提供了简单而功能丰富的解决方案,适用于研究和教育等多种场景。
breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
easy-tensorflow - TensorFlow教程与简化代码示例
Easy-TensorFlowGithubPythonTensorFlow开源项目教程深度学习
Easy-TensorFlow提供详尽的教程和简化的代码实现,旨在简化学习路径。项目涵盖从基础到高级的教程,每个步骤都有全面解释和源代码示例。它强调低层和高层网络训练接口、Tensorboard可视化工具、多GPU支持等特性。无论是新手还是有经验的开发者,都可以通过这些教程更加高效地掌握TensorFlow。
End-to-end-for-chinese-plate-recognition - 中文车牌识别与矫正的解决方案
CNNEnd-to-end-for-chinese-plate-recognitionGithubTensorFlowU-Net开源项目车牌识别
项目基于u-net、cv2和卷积神经网络(cnn),使用tensorflow和keras实现。功能包括中文车牌的定位、矫正和识别。通过u-net进行图像分割,cv2进行边缘检测和车牌区域矫正,再用cnn实现多标签端到端识别。测试表明,系统在拍摄角度倾斜、强曝光和昏暗环境下表现出色,甚至对某些百度AI未能识别的车牌也能识别。请确保输入图片尺寸小于240x80,以获得最佳识别效果。详情请参阅CSDN博客。
UNI - 病理学AI基础模型助力精准医疗诊断
GithubHuggingfaceUNI图像处理开源项目模型深度学习病理学视觉编码器
UNI是一个基于1亿张病理图像预训练的视觉编码器,为病理学AI诊断提供了强大的基础模型。它在34项临床任务中展现出卓越性能,特别是在罕见和代表性不足的癌症类型诊断上。UNI不使用公开数据集进行预训练,有助于研究人员在避免数据污染的前提下构建和评估病理AI模型。该模型遵循CC-BY-NC-ND 4.0许可证,仅限非商业学术研究使用。
UniRepLKNet - 统一架构的大核卷积网络,提升多模态识别与时间序列预测精度
GithubUniRepLKNet图像识别多模态识别大核卷积开源项目时间序列
UniRepLKNet项目提出了一个适用于图像、音频、视频、点云和时间序列的大核卷积网络统一架构。通过提供四个设计大核卷积网络的架构指南,显著提升了多模态数据的识别性能。特别是在全球温度和风速预测等挑战性的时间序列预测任务中,UniRepLKNet表现优异,超过了现有系统。这一项目不仅重振了卷积神经网络在传统领域的表现,还展示了其在新兴领域的广泛应用潜力。
DeepLearning - 深度学习资源,涵盖教程、图书和实战项目
Github图像处理开源项目机器学习深度学习神经网络自然语言处理
探索全面的深度学习资源,涵盖教程、图书和实战项目,适合从新手到专家的每一个阶段。
tensorflow-101 - 面部表情识别、面部识别和外貌特征预测等应用的深度学习教程
GithubTensorFlow年龄和性别预测开源项目情感识别深度学习面部识别
该项目提供详尽的深度学习教程,包括面部表情识别、面部识别和外貌特征预测等应用。用户可以获取源代码和逐步教程,并使用Kaggle数据集进行训练。涵盖先进的识别模型如VGG-Face、FaceNet和DeepFace,适用于大规模数据集。此项目为深度学习开发者提供全面的学习资源,从基础到实战。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号