Project Icon

u-net

使用Keras库构建深度神经网络的教程

本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。

nnUNet - 自适应医学图像分割深度学习框架
GithubnnU-Net医学影像图像分割开源项目深度学习自动化
nnUNet是一个自适应深度学习框架,专注于医学图像分割。它可自动分析训练数据并优化U-Net分割流程,无需专业知识即可使用。支持2D和3D图像,处理多种模态和输入通道,并能应对不平衡类别分布。在多个生物医学图像分割挑战中表现出色,广泛用作基线方法和开发框架。适用于领域科学家和AI研究人员,为医学图像分析提供强大支持。
x-unet - 集成高效注意力机制的先进U-Net框架
GithubU-Net图像分割开源项目深度学习神经网络计算机视觉
x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。
UNetPlusPlus - 嵌套U-Net架构优化医学图像分割
GithubUNet++医学影像卷积神经网络图像分割开源项目深度学习
UNet++是一种改进的医学图像分割架构,通过重新设计跳跃连接和密集连接解码器,解决了U-Net的架构深度和连接设计问题。项目提供Keras和PyTorch实现,并获得多个第三方支持。UNet++在医学图像分割任务中表现优异,为研究提供了有力工具。该项目已在GitHub开源,欢迎研究者使用和贡献。
UCTransNet - 融合U-Net与Transformer的医学图像分割网络
GithubTransformerU-NetUCTransNet医学图像分割开源项目深度学习
UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。
U-KAN - 提升医学图像分割和生成效能的创新框架
GithubU-KAN医学图像分割医学图像生成开源项目深度学习计算机视觉
U-KAN是一个将Kolmogorov-Arnold网络(KAN)层整合到U-Net结构中的医学图像处理框架。这种创新设计在提高图像分割和生成任务准确性的同时,降低了计算成本。U-KAN在多个医学图像数据集的分割任务中表现出色,并在图像生成领域展现潜力。这项研究为医学图像处理技术的进步提供了新思路,有望推动更精准、高效的诊断和分析工具的发展。
Pytorch-UNet - PyTorch实现的高效U-Net语义分割模型
CarvanaGithubPyTorchU-Net开源项目深度学习语义分割
Pytorch-UNet项目提供定制的U-Net实现,支持多类别分割任务,包括车体遮罩、肖像分割和医学图像分割。兼容PyTorch 1.13及以上版本,提供Docker镜像和预训练模型,便于集成和使用。模型在高分辨率图像上训练,取得了0.988的Dice系数,并支持自动混合精度,可通过Weights & Biases实时监控训练进度。
neurite - 医疗影像分析神经网络工具箱,支持TensorFlow和Keras
GithubNeuritekerastensorflow医疗影像分析卷积网络开源项目
Neurite是一个专注于医疗影像分析的神经网络工具箱,兼容TensorFlow和Keras,包括多种网络层、实用工具、灵活模型、生成器和回调函数,适合处理、训练和调试医疗影像数据。其主要功能有UNet模型、卷积编码器和解码器、N维网格插值、分割工具和度量指标。该工具可以通过pip简单安装,并提供科研文献引用支持,项目鼓励社区贡献,已在VoxelMorph和brainstorm等项目中使用。
MT-UNet - 融合Transformer和UNet的医学图像分割新模型
GithubMT-UNet医学图像分割开源项目数据集准备权重文件模型训练
MT-UNet是一种结合Transformer和UNet优势的医学图像分割模型。该模型在Synapse和ACDC数据集上分别达到79.20%和91.61%的DSC评分。MT-UNet通过混合transformer结构实现多尺度特征融合,为医学图像分析提供新思路。项目开源代码和预训练权重,便于研究者复现结果和深入研究。
UniSeg - 多模态3D医学图像通用分割模型
GithubMICCAI 2023UniSeg分割模型医学图像多器官分割开源项目
UniSeg是一个基于提示驱动的通用分割模型,可对多模态、多领域的3D医学图像进行多器官、肿瘤和椎骨分割。作为强大的分割模型和特征学习器,UniSeg提供完整代码实现、预训练模型及详细使用说明。项目涵盖数据准备、预处理、训练和测试等步骤。在MICCAI SegRap 2023比赛中,UniSeg在两项任务中均获得第二名,展现了其在医学图像分割领域的出色表现。
tensorflow-deep-learning - TensorFlow深度学习教程
GithubTensorFlow开源项目深度学习神经网络训练课程
本项目通过展示如何使用TensorFlow和Keras解决多种问题,教授深度学习的基本技能及其应用。课程内容包括关键视频教程、实践练习和项目实战,确保学习者能通过动手操作全面理解深度学习。适合任何级别的学者,帮助你提升个人和职业技能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号