Project Icon

u-net

使用Keras库构建深度神经网络的教程

本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。

unet.cu - UNet扩散模型的高性能CUDA实现
CUDAGithubUNet卷积神经网络图像生成开源项目深度学习
这个开源项目使用纯C++/CUDA实现了UNet扩散模型训练框架,支持无条件扩散。框架包含线性层、组归一化、注意力等核心算子的GPU加速实现,重点优化3x3卷积。通过多次迭代提升CUDA kernel性能,训练速度达PyTorch的40%。项目展示了深度学习框架在GPU上的高效实现过程,为相关开发提供参考。
pytorch-3dunet - 支持语义分割和回归问题的3D U-Net模型实现
3D U-NetGithubpytorch-3dunet安装开源项目训练预测
pytorch-3dunet实现了多种3D U-Net模型及其变体,包括标准3D U-Net、残差3D U-Net和带压缩激励块的残差3D U-Net。该项目支持二元和多分类语义分割以及去噪、学习反卷积等回归问题。项目还支持2D U-Net,提供多种配置示例帮助用户训练和预测。此外,该项目可在Windows和OS X系统上运行,并支持多种损失函数和评估指标,如Dice系数、平均交并比、均方误差等。这一描述更加简洁、流畅,同时保持了准确性。
deep-learning-for-image-processing - 涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练的介绍深度学习在图像处理中的应用的教程
GithubPytorchTensorflow图像分类图像处理开源项目深度学习
本教程介绍深度学习在图像处理中的应用,涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练。课程内容包括图像分类、目标检测、语义分割、实例分割和关键点检测,适合研究生和深度学习爱好者。所有PPT和源码均可下载,助力学习和研究。
TensorFlow-Tutorials - TensorFlow 2 深度学习教程
GithubKerasPythonTensorFlow开源项目教程深度学习
这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。
SOTA-MedSeg - 医学图像分割前沿挑战与顶级方法概览
GithubMICCAIU-Net医学图像分割开源项目挑战赛深度学习
SOTA-MedSeg项目汇总了医学图像分割领域的前沿挑战和顶级方法。涵盖头部、颈部、心脏和腹部等多个身体部位的分割任务,包括脑肿瘤、主动脉瘤和肾脏肿瘤等疾病。项目列出各大挑战赛的最佳方法及性能指标,提供相关论文和代码链接,是了解医学图像分割最新进展的综合资源。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
Keras-GAN - 多种生成对抗网络(GAN)的Keras实现与教程
GithubKeras-GAN图像生成开源项目机器学习深度学习生成对抗网络
该项目包含多种Keras实现的生成对抗网络(GAN),如AC-GAN、CycleGAN、Pix2Pix等,基于研究论文,提供核心概念的实现与详细教程。欢迎社区贡献以扩展更多GAN变体。
DeepLearningProject - 全面教程涵盖数据集创建与深度学习
GithubHarvard UniversityPyTorchPython开源项目机器学习深度学习
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
Coloring-greyscale-images - 基于神经网络的黑白图像自动上色技术
GANGithubKerasNeural NetworksTensorflow图像上色开源项目
通过本教程,学习如何利用神经网络为黑白照片自动上色。从基础到高级的GAN版本,逐步增加网络复杂度和自动化训练流程。教程覆盖安装步骤、数据集推荐及使用指南,适合各级用户。
urban_seg - 针对初学者的遥感图片语义分割项目
Githubunicom模型urban_seg多GPU训练开源项目语义分割遥感图片
一个针对初学者的遥感图片语义分割项目,使用在4亿张图片上预训练的unicom模型。该模型在遥感分割中表现出色,仅需4张图片训练即可取得良好效果。提供简单的单GPU和多GPU训练代码,帮助快速上手并提升性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号