Project Icon

wav2vec2-large-robust-ft-libri-960h

多领域预训练的大规模语音识别模型

wav2vec2-large-robust-ft-libri-960h是一个基于Wav2Vec2架构的大规模语音识别模型。该模型在多个领域的音频数据集上进行了预训练,包括Libri-Light、CommonVoice、Switchboard和Fisher,涵盖了有声读物、众包语音和电话交谈等多种音频类型。随后,模型在960小时的Librispeech数据集上进行了微调。这种多领域预训练和目标域微调的方法显著提高了模型在跨领域语音识别任务中的性能。模型支持16kHz采样率的语音输入,适用于需要处理多样化音频数据的应用场景。

wav2vec2-large-voxrex-swedish - 基于Wav2vec 2.0的瑞典语语音识别模型实现低错误率
Common VoiceGithubHuggingfaceVoxRexWav2vec 2.0开源项目模型瑞典语语音识别
该项目提供了一个基于Wav2vec 2.0 large VoxRex模型微调的瑞典语语音识别模型。模型使用瑞典广播、NST和Common Voice数据集进行训练,在Common Voice测试集上达到8.49%的词错误率,在NST和Common Voice混合测试集上仅为2.5%。模型支持16kHz采样率的语音输入,可直接使用无需额外语言模型。项目还包含详细的使用说明和性能对比分析。
wav2vec2-lg-xlsr-en-speech-emotion-recognition - 微调Wav2Vec 2.0实现高精度语音情感识别
GithubHuggingfaceRAVDESS数据集Wav2Vec 2.0开源项目微调模型深度学习语音情感识别
项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。
wav2vec2-xls-r-300m-ftspeech - 基于XLS-R-300m的丹麦语语音识别模型 使用FTSpeech数据集微调
FTSpeechGithubHuggingfaceXLS-R-300mwav2vec2丹麦语开源项目模型语音识别
该丹麦语自动语音识别模型基于wav2vec2-xls-r-300m在FTSpeech数据集上微调。模型利用1,800小时丹麦议会演讲转录数据训练,在Danish Common Voice 8.0和Alvenir测试集上分别实现17.91%和13.84%的词错误率(WER)。这一性能表明,该模型为丹麦语语音识别任务提供了有效的解决方案。
wav2vec2-large-xlsr-53-spanish - 基于XLSR-53微调的西班牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型西班牙语语音识别
此西班牙语语音识别模型基于Facebook的wav2vec2-large-xlsr-53,在Common Voice数据集上微调。模型在测试集上达到8.82%词错误率和2.58%字符错误率,可直接处理16kHz采样的语音输入。项目提供使用示例和评估脚本,便于用户应用和评估。模型采用16kHz采样率,无需额外语言模型即可使用。项目还包含详细的使用说明和评估方法,有助于研究人员和开发者快速集成和测试。
wav2vec2-large-xlsr-53-japanese - 基于Wav2Vec2的日语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目日语模型语音识别
该模型是在facebook/wav2vec2-large-xlsr-53基础上,使用日语语音数据集微调而来的语音识别模型。在Common Voice日语测试集上,其词错误率(WER)为81.80%,字符错误率(CER)为20.16%,优于同类模型。它可直接用于日语语音转文本,无需额外语言模型。模型要求输入音频采样率为16kHz。
wav2vec2-large-xlsr-53-romanian - 基于XLSR-53的罗马尼亚语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型模型微调罗马尼亚语语音识别
该项目基于Facebook的wav2vec2-large-xlsr-53模型,通过Common Voice罗马尼亚语数据集进行微调,创建了一个专门用于罗马尼亚语的语音识别模型。在Common Voice罗马尼亚语测试集上,模型达到了24.84%的词错误率。适用于16kHz采样的罗马尼亚语音输入,无需额外语言模型即可使用。项目还提供了完整的使用说明和评估代码,便于研究者和开发者快速应用和验证。
Wav2Vec2-Large-XLSR-53-catalan - 加泰罗尼亚语自动语音识别模型性能表现
CatalanCommon VoiceGithubHuggingfaceWav2Vec2开源项目模型训练语音识别
项目在Common Voice数据集上微调了Facebook的Wav2Vec2-Large-XLSR-53模型,专注于加泰罗尼亚语的自动语音识别,达到8.11%的WER。支持直接使用无需语言模型的音频处理,并提供使用和评估的详细方法和代码示例。模型训练中处理内存问题的策略也有介绍。用户可考虑更新版本以获取更好的性能。
wavlm-base-plus-sv - 面向说话人验证的先进语音模型
GithubHuggingfaceWavLM开源项目模型自监督学习语音识别说话人验证预训练模型
WavLM-Base-Plus-SV是一款专为说话人验证优化的预训练语音模型。基于HuBERT框架,通过创新的门控相对位置偏置和话语混合训练,显著提升了语音内容和说话人特征的建模能力。经过94000小时语音数据预训练和VoxCeleb1数据集微调,该模型在SUPERB基准测试中展现出卓越性能。它能够有效提取说话人嵌入向量,适用于相似度检索和说话人验证等多种应用场景。
s2t-small-librispeech-asr - 小型LibriSpeech语音识别模型的高效自动化
GithubHuggingfaceLibriSpeechSpeech2Texts2t-small-librispeech-asr开源项目模型自动语音识别语音转换文本
s2t-small-librispeech-asr是一种小型端到端语音识别模型,使用LibriSpeech ASR语料库进行训练。该模型采用自回归的方式生成转录文本,并结合Pytorch及其工具如torchaudio和sentencepiece以提高准确性。在LibriSpeech“clean”和“other”测试集上的WER分别为4.3和9.0,可满足高性能语音识别应用的需求。
wav2vec2-large-xlsr-53-dutch - XLSR-53模型在荷兰语语音识别上的应用与性能
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型荷兰语语音识别
这是一个基于facebook/wav2vec2-large-xlsr-53模型,针对荷兰语语音识别任务进行微调的模型。通过使用Common Voice 6.1和CSS10数据集进行训练,该模型在Common Voice nl测试集上达到了15.72%的词错误率和5.35%的字符错误率。模型设计用于处理16kHz采样率的语音输入,可单独使用或与语言模型配合。项目详细说明了使用方法和评估流程,为荷兰语自动语音识别提供了一个有效的开源解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号