Project Icon

actionformer_release

基于Transformer的高精度动作时刻定位模型

actionformer_release是一个基于Transformer的动作定位模型,能够检测动作实例的起止点并识别动作类别。在THUMOS14数据集上,该模型取得了71.0%的mAP,超越之前的最佳模型14.1个百分点,并首次突破60%的mAP。此外,该模型在ActivityNet 1.3和EPIC-Kitchens 100数据集上也取得了优异成绩。该项目设计简洁,通过局部自注意力机制对未剪辑视频进行时间上下文建模,并可一次性精确定位动作时刻。代码和预训练模型已开源,可供下载和试用。

PDFormer - 基于传播延迟感知的动态长程模型优化交通流量预测
GithubPDFormer交通流预测人工智能开源项目时空数据分析深度学习
PDFormer是一种新型交通流量预测模型,结合传播延迟感知和动态长程Transformer架构提高预测准确性。该模型在多个基准数据集上展现出优异性能,能有效捕捉复杂时空依赖关系。作为交通分析工具,PDFormer可应用于交通管理和城市规划,有潜力缓解拥堵并优化路线。
other - 高性能开源自然语言处理框架
GithubHuggingfacetransformers人工智能开源项目机器学习模型深度学习自然语言处理
Transformers是一个开源的自然语言处理框架,提供多种预训练模型和工具。支持文本分类、问答和生成等任务,适用于研究和生产环境。该框架易用且灵活,可处理多语言文本,支持迁移学习。Transformers定期更新,紧跟NLP领域最新进展,为用户提供丰富的API和优化的性能。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
mask2former-swin-large-ade-semantic - Mask2Former:统一架构实现多类型图像分割
GithubHuggingfaceMask2FormerTransformer图像分割开源项目模型计算机视觉语义分割
Mask2Former-Swin-Large-ADE-Semantic是一款先进的图像分割模型,基于Swin backbone构建并在ADE20k数据集上训练。该模型采用统一架构处理实例、语义和全景分割任务,通过预测掩码和标签集实现多类型分割。其核心优势在于采用改进的多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率方面均优于前代MaskFormer模型。Mask2Former适用于广泛的图像分割场景,能够提供精确的分割结果。
mask2former-swin-large-mapillary-vistas-panoptic - Mask2Former:集实例、语义和全景分割于一体的图像分割模型
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一个基于Swin主干网络的高级图像分割模型,在Mapillary Vistas数据集上训练用于全景分割。它通过预测掩码和标签集合,统一处理实例、语义和全景分割任务。该模型采用改进的Transformer架构和高效训练策略,性能和效率均优于先前的MaskFormer。Mask2Former为各类图像分割应用提供了强大支持,推动了计算机视觉技术的进步。
transformers-code - 对Transformers从入门到高效微调的全方位实战指南
GithubNLPTransformers分布式训练开源项目微调模型训练
课程提供丰富的实战代码和案例,从基础入门到高效微调以及低精度和分布式训练。涵盖命名实体识别、机器阅读理解和生成式对话机器人等NLP任务。帮助深入理解Transformers的核心组件和参数微调技术,包括模型优化和分布式训练。适合对Transformers应用和实践感兴趣的学习者。课程在B站和YouTube持续更新,紧跟技术前沿。
segformer-b5-finetuned-ade-640-640 - SegFormer-b5模型用于ADE20k数据集的语义分割
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b5是一个针对ADE20k数据集640x640分辨率微调的语义分割模型。该模型采用层次化Transformer编码器和轻量级MLP解码头,在ADE20K等基准测试中表现优异。模型在ImageNet-1k预训练后,添加解码头并在目标数据集上微调,可应用于多种语义分割任务。
infini-transformer - 针对无限长度上下文设计的高效Transformer模型
GithubInfini-Transformer位置编码开源项目注意力机制自然语言处理长序列处理
Infini-Transformer是一种创新的Transformer模型,专门用于处理无限长度的上下文。该模型采用压缩性记忆机制和混合深度技术,能有效处理超长序列。Infini-Transformer支持文本分类、问答和语言生成等多种任务,并集成RoPE和YaRN等先进位置编码技术。这一模型为长文本处理和大规模语言任务提供了高效解决方案。
segformer-b1-finetuned-ade-512-512 - SegFormer-b1在ADE20k数据集上微调的语义分割模型
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b1是一种针对语义分割任务的深度学习模型,在ADE20k数据集上进行了微调。该模型结合了层次化Transformer编码器和轻量级MLP解码头,在512x512分辨率下展现出优秀的分割效果。模型经过ImageNet-1k预训练后,通过添加解码头并在特定数据集上微调,可直接应用于语义分割或作为其他相关任务的基础。
AvatarPoser - 革新全身姿态跟踪 仅需头手运动数据
AMASS数据集AvatarPoserGithubTransformer全身姿势跟踪开源项目混合现实
AvatarPoser是一项突破性的全身姿态预测技术,仅需头部和手部运动数据即可在世界坐标系中准确估计全身姿态。该方法结合Transformer编码器和运动解耦技术,通过逆运动学优化生成逼真动作。AvatarPoser在大型动作捕捉数据集上表现出色,并具备实时推理能力,为元宇宙应用中的全身虚拟形象控制提供了实用解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号