Project Icon

actionformer_release

基于Transformer的高精度动作时刻定位模型

actionformer_release是一个基于Transformer的动作定位模型,能够检测动作实例的起止点并识别动作类别。在THUMOS14数据集上,该模型取得了71.0%的mAP,超越之前的最佳模型14.1个百分点,并首次突破60%的mAP。此外,该模型在ActivityNet 1.3和EPIC-Kitchens 100数据集上也取得了优异成绩。该项目设计简洁,通过局部自注意力机制对未剪辑视频进行时间上下文建模,并可一次性精确定位动作时刻。代码和预训练模型已开源,可供下载和试用。

Comprehensive-Transformer-TTS - 基于非自回归 Transformer 的 TTS
GithubPyTorchTTS开源项目持续时间建模语音合成非自回归变换器
该项目采用非自回归Transformer技术,集成多种最新状态转换模型。Comprehensive-Transformer-TTS不仅提供监督与非监督持续时间建模, 也支持多种数据集和SOTA技术,如Fastformer和Long-Short Transformer,力求在文本到语音转换领域取得领先成果。
MTR - 自动驾驶多模态运动预测的先进框架
GithubMotion TransformerWaymo数据集多模态运动预测开源项目神经网络自动驾驶
MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。
maskformer-swin-large-ade - MaskFormer模型提升语义分割效率与精确度的创新方案
ADE20kGithubHuggingfaceMaskFormerpanoptic分割实例分割开源项目模型语义分割
MaskFormer通过ADE20k数据集训练,利用Swin结构提升语义、实例和全景分割性能。该模型适用于多种分割任务,采用统一的掩码及标签预测方式处理三类分割,促进图像细分任务的研究和应用,如建筑物和场景的精确分割。项目由Hugging Face团队支持,可在模型中心找到其他版本进行适用性调优。
conformer - 结合卷积神经网络和Transformers的语音识别模型
ConformerGithubPyTorchTransformer卷积神经网络开源项目语音识别
Conformer模型结合卷积神经网络和Transformers,能同时捕捉音频的局部和全局依赖关系,提高语音识别精度并节省参数。本项目提供该模型的PyTorch实现,包含详细的安装和使用指南,适用于Python 3.7及更高版本。
MotionBERT - 多任务人体运动表征学习框架
GithubMotionBERT人体动作表示姿态估计开源项目深度学习计算机视觉
MotionBERT是一个多任务人体运动表征学习框架,整合了3D人体姿态估计、基于骨骼的动作识别和人体网格恢复等任务。该项目提供预训练模型和下游任务实现,支持自定义视频推理和生成以人为中心的视频表征。MotionBERT在多个基准测试中展现出优异性能,为人体运动分析研究提供了一个统一且高效的解决方案。
Multi-Task-Transformer - 场景理解多任务变压器模型 TaskPrompter和InvPT
GithubTransformer场景理解多任务学习开源项目深度学习计算机视觉
Multi-Task-Transformer项目提供两种场景理解多任务变压器模型:TaskPrompter和InvPT。TaskPrompter利用空间-通道多任务提示进行密集场景理解,InvPT采用倒金字塔架构。这些模型在单目深度估计和3D目标检测等任务中表现出色,并在ICLR2023和ECCV2022会议上发表。项目开源代码和预训练模型,支持多种计算机视觉应用。
BEVFormer - 多摄像头鸟瞰图学习框架助力自动驾驶感知
BEVFormerGithub多相机感知开源项目目标检测自动驾驶鸟瞰图表示
BEVFormer是一个用于自动驾驶感知的开源框架,通过时空Transformer从多摄像头图像中学习统一的鸟瞰图表示。该方法利用预定义的网格查询,结合空间交叉注意力和时间自注意力机制,有效聚合多视角的空间和时序信息。在nuScenes测试集上,BEVFormer达到56.9%的NDS指标,显著超越现有方法,与激光雷达系统性能相当。这一创新为基于纯视觉的3D目标检测提供了新的基准。
EasyAnimate - 基于Transformer的高分辨率长视频生成框架
AI绘图EasyAnimateGithub开源项目深度学习视频生成计算机视觉
EasyAnimate是一个开源的高分辨率长视频生成框架。该项目基于Transformer架构,采用类Sora结构和DIT技术,使用Transformer作为视频生成的扩散器。EasyAnimate支持训练扩散模型生成器、处理长视频的VAE和元数据预处理。用户可直接使用预训练模型生成多种分辨率的6秒24帧视频,也可训练自定义基线模型和Lora模型实现特定风格转换。
oneformer_ade20k_swin_tiny - 通过单一模型实现多任务图像分割的统一框架
GithubHuggingfaceOneFormer图像分割实例分割开源项目模型深度学习语义分割
OneFormer通过单一架构实现语义、实例和全景分割的统一处理。基于ADE20k数据集训练并采用Swin主干网络,这个紧凑型模型仅需一次训练即可完成多种图像分割任务。其独特的任务令牌机制实现了训练引导和推理动态化,为图像分割领域提供了高效的解决方案。
FLASH-pytorch - FLASH 线性时间内提升Transformer效能的开源实现
FLASHGithubPyTorchTransformer开源项目注意力机制深度学习
FLASH-pytorch是一个开源项目,实现了一种高效的Transformer变体。该项目采用门控注意力单元(GAU)和分组线性注意力,在线性时间内提升模型性能。它提供简洁API,支持自回归和非自回归模式,并整合多种位置编码技术。这一工具使研究人员和开发者能够便捷地探索和应用Transformer的最新优化技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号