Project Icon

VisualRWKV

结合RWKV的创新视觉语言模型

VisualRWKV是一个创新的视觉语言模型,基于RWKV架构设计,可处理多样化的视觉任务。该模型采用两阶段训练策略:首先进行预训练,利用预训练数据集训练视觉编码器到RWKV的投影层;随后进行微调,通过视觉指令数据优化模型性能。项目提供完整的训练指南,涵盖数据准备、模型获取和训练流程,支持多GPU并行和不同规模RWKV模型的训练。

LRV-Instruction - 通过稳健指令调优降低多模态模型幻觉风险
GPT4GithubLRV-InstructionMiniGPT4mplug-owl多模态模型开源项目
该项目通过稳健的指令调优,减少大规模多模态模型的幻觉现象,提升其在复杂视觉和语言任务中的表现。LRV-Instruction 数据集包含多种视觉和语言任务数据,通过 GPT-4 生成,提供正面和反面的指令示例,以提高模型的鲁棒性和准确性。最新的研究进展和更新内容不断推进多模态图表理解和图像上下文推理基准的发展,为相关领域提供重要的数据支持。
llava-v1.5-7b - 融合视觉与语言的开源多模态AI模型
GithubHuggingfaceLLaVA人工智能图像文本理解多模态模型开源项目模型自然语言处理
LLaVA-v1.5-7B是一个开源的多模态AI模型,通过微调LLaMA/Vicuna实现。该模型整合了视觉和语言处理能力,能够理解图像并进行自然语言对话。LLaVA-v1.5-7B在大规模数据集上训练,包括558K图文对和158K多模态指令数据,并在12个基准测试中表现优异。这个模型主要应用于多模态大模型和聊天机器人的研究,适用于计算机视觉、自然语言处理等领域的研究人员。
LLaVA-NeXT - 大规模开源多模态模型提升视觉语言能力
AI助手GithubLLaVA-NeXT多模态模型大语言模型开源项目视觉语言模型
LLaVA-NeXT是一个开源的大规模多模态模型项目,致力于提升视觉语言交互能力。该项目支持多图像、视频和3D任务的统一处理,在多个基准测试中表现卓越。LLaVA-NeXT提供了多个模型变体,包括支持高分辨率输入和视频处理的版本,以及基于不同大语言模型的实现。此外,项目还开源了训练数据和代码,为研究人员和开发者提供了宝贵资源。
Video-LLaVA-7B-hf - 基于LLM的统一视觉模型实现图像和视频的智能处理
GithubHuggingfaceVideo-LLaVA多模态模型开源项目模型视觉识别视频分析语言模型
Video-LLaVA是一个基于Vicuna-13b的开源多模态模型,通过统一的视觉表示编码器实现图像和视频内容的并行处理。该模型采用语言对齐投影方式,无需图像-视频配对数据即可完成训练。模型支持图像和视频的混合输入,可应用于内容理解、问答和描述等视觉分析任务。
Mono-InternVL-2B - 原生多模态大语言模型融合视觉与文本能力
GithubHuggingfaceInternLM2原生模型多模态大语言模型开源项目模型视觉识别语言模型
Mono-InternVL是一个融合视觉编码和文本解码的原生多模态大语言模型。它通过专家混合机制和内生视觉预训练方法优化视觉理解能力,同时保持强大的语言能力。该模型基于InternLM2构建,拥有1.8B激活参数,在多项视觉语言基准测试中表现优异,并将首个token的延迟降低67%,大幅提升了部署效率。
llava-v1.6-vicuna-13b - 强大的图文多模态AI模型 集成Vicuna-13b实现视觉智能对话
GithubHuggingfaceLLaVA多模态大型语言模型开源项目指令跟随模型视觉问答
LLaVA-v1.6是基于Vicuna-13b微调的开源多模态AI模型,通过大规模图文对和指令数据训练而成。该模型擅长学术视觉问答和通用图像理解,支持自然的图文交互。采用transformer架构,为计算机视觉和自然语言处理研究提供了强大的视觉语言处理工具。
Chat-UniVi - 统一视觉表示赋能大语言模型理解图像和视频
Chat-UniViGithub图像视频统一多模态大语言模型开源项目视觉理解
Chat-UniVi是一个多模态AI模型,采用统一的视觉表示方法实现图像和视频的同步理解。该模型运用动态视觉令牌技术,有效捕捉图像空间细节和视频时序关系。经过联合训练,Chat-UniVi在图像和视频理解任务中表现优异,性能超过专门设计的单一模态模型。模型支持多轮对话,能处理包含多个图像或视频的复杂场景,为视觉AI研究提供新思路。
moondream - 小巧高效的视觉语言模型 兼容多平台运行
AI问答Githubmoondream图像识别开源项目深度学习视觉语言模型
moondream是一款小型视觉语言模型,可在多种平台上运行。该模型在VQAv2、GQA和TextVQA等基准测试中表现优异,能够回答图像相关问题并提供详细描述。moondream支持批量处理,可通过transformers库或GitHub仓库使用。尽管体积小巧,该模型在图像理解和问答任务上表现出色。
VisionVision - 优化图像合成质量,通过模型融合实现多元风格
AI绘图GithubHuggingfaceStable DiffusionVisionVision动漫开源项目模型真实感
该项目结合realistic-vision-v1.3和ZootVisionBeta模型,优化图像生成的质量与细节,尤其是在合成和眼部细节方面。VisionVision支持多种风格,包括写实与艺术表现,适用于动漫与真实感艺术创作。项目使用SuperMerger技术,提供丰富样例与提示,帮助用户生成优质图像。
BLIVA - 处理文本视觉问题的多模态LLM
BLIVAGithub多模态开源项目文本富媒体机器学习视觉问答
BLIVA是一款简单有效的多模态大语言模型,专门处理富文本视觉问题。其在多个视觉问答基准中表现出色,并公开了模型权重和训练代码。结合FlanT5和Vicuna版本,BLIVA适用于多种商业用途并提升认知和感知任务性能。演示和安装教程也非常详细。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号