Project Icon

llm_training_handbook

大规模语言模型训练手册

该手册为语言模型训练工程师和操作员提供了多种方法和实用脚本,涵盖模型并行性、最大化吞吐量、张量精度和数据类型、训练超参数和模型初始化、不稳定性排查、以及软件和硬件故障调试等方面。适合需要深入技术细节的用户。若需要概述性和概念性内容,请参考姊妹项目The Large Language Model Training Playbook。

large_language_model_training_playbook - 大规模语言模型训练指南与实用技巧
GithubLLM Training Playbook大语言模型开源项目张量精度模型并行策略模型架构
此页面提供了大规模语言模型训练的实用指南和资源,涉及模型架构选择、并行策略、模型规模、张量精度、训练超参数设定、最大化吞吐量、稳定性问题、数据处理以及软件和硬件故障调试等主题。这些开放的技巧和工具可以帮助更高效地训练大规模语言模型,并提升其性能和稳定性。
ml-engineering - 大规模语言模型与多模态模型的训练方法
BLOOM-176BContextual.AIGithubHuggingFaceLarge Language ModelsVLM开源项目
本指南系统介绍了方法、工具和逐步操作说明,帮助工程师成功训练大规模语言模型(LLM)和多模态模型(VLM)。内容涵盖丰富的脚本和命令,适合LLM/VLM训练工程师和操作员使用。基于作者在开源BLOOM-176B和IDEFICS-80B模型训练中的经验,提供有效解决方案,并持续更新,服务于ML社区。
LLM-PowerHouse-A-Curated-Guide-for-Large-Language-Models-with-Custom-Training-and-Inferencing - 大型语言模型的定制训练和推理指南
GithubLLM PowerHousePython开源项目机器学习深度学习自然语言处理
LLM-PowerHouse项目为开发人员、研究人员和爱好者提供一站式指南,通过定制化训练和推理优化大型语言模型(LLMs)。包括基础知识、先进技术、模型压缩、优化策略和实例代码,适用于高效智能的自然语言理解应用。
llm_distillation_playbook - 大语言模型蒸馏技巧与实践指南
GPT-4GithubLLM开源开源项目模型蒸馏评估标准
LLM Distillation Playbook项目提供了系统化的大语言模型蒸馏实践指南。该项目探讨了模型蒸馏的关键概念、评估标准和实用技巧,涵盖数据准备到模型部署的全流程。它为工程师和ML实践者提供见解,帮助在生产环境中将大型语言模型压缩为高效小型版本。该指南融合学术研究和实践经验,是开源LLM开发的参考资源。
llms - 大型语言模型的原理与实践应用全面解析
BERTGPTGithubTransformer开源项目自然语言处理语言模型
本项目全面介绍大型语言模型(LLMs)的基本概念、应用场景和技术演进。内容涵盖统计语言模型、神经网络语言模型,以及基于Transformer的预训练模型如GPT和BERT等。系统讲解LLMs核心原理,并探讨模型评估、文本生成和提示工程等实用技术。同时展示LLMs在计算机视觉等领域的创新应用,通过理论与实践结合,为读者提供深入了解LLMs技术的全面指南。
MINI_LLM - 完整中文大语言模型训练流程实践
DPOGithubMini-llm大模型开源项目微调预训练
MINI_LLM项目展示了完整的中文大语言模型训练流程,涵盖预训练、SFT指令微调和DPO优化阶段。该项目基于QWEN模型,利用多种数据集训练出1.4B参数规模的模型。项目详细介绍了数据处理方法、提供训练脚本,并包含多GPU训练指南,为中文大语言模型开发提供了实用参考。
Local-LLM-User-Guideline - 本地大语言模型深度解析 理论与实践全方位探讨
GithubLLM开源模型开源项目本地部署自定义隐私保护
本项目提供Local-LLM全面指南,深入剖析大语言模型背景、开源LLM利弊、在线与本地LLM对比及应用场景。详述LLM运作机制、应用差异和在线使用挑战。指南助力用户选择合适LLM方案,尤其适合本地部署LLM的开发者和研究人员参考。
LLMs-from-scratch - 简明易懂的GPT类大语言模型构建与训练教程
Build a Large Language ModelGPTGithubLLM开源项目微调预训练
本书详细介绍了如何从零开始编码、构建和训练GPT类大语言模型。提供逐步指导、清晰图示和示例,适合教育用途的小型模型开发,并包含大模型预训练权重加载和微调的代码示例。
LLM-FineTuning-Large-Language-Models - LLM微调实践与技术应用指南
Fine-tuningGithubLLMPEFTQLoRA开源项目量化
本项目介绍了如何使用ORPO、QLoRA、GPTQ等技术对大型语言模型(LLM)进行微调,包含具体实例和代码片段。项目还提供与这些技术相关的YouTube视频链接,提供全面的学习资料。此外,项目还包含各类实用工具和技术说明,帮助用户更好地理解和应用这些前沿技术。适合有一定编程基础的研究人员和开发者参考。
LLMBook-zh.github.io - 大语言模型技术的发展与前景
ChatGPTGithubOpenAI人工智能大语言模型开源项目预训练语言模型
本书全面介绍了大语言模型技术,包括基础原理、关键技术和应用前景。通过深入研究,大模型的发展历程得到探索,其中包含OpenAI的GPT系列模型和训练细节。本书适合具有深度学习基础的高年级本科生和低年级研究生,为科研人员提供指导,推动人工智能技术的进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号