Project Icon

fann

高性能开源神经网络库

FANN是一个用C语言实现的开源神经网络库,支持多层网络结构和多种连接方式。它具备跨平台兼容性、高性能计算能力和易用性,提供丰富的训练算法和激活函数。该库支持15种以上编程语言绑定,附带完整文档和图形界面,适用于研究和商业开发。FANN让用户能够便捷地构建、训练和部署神经网络模型。作为一个广受欢迎的项目,FANN日均下载量约100次,支持RPROP和Quickprop等多种训练方法,实现了多种激活函数,并可在固定点和浮点数系统上运行。其执行速度比类似库快达150倍,同时保持了良好的灵活性。FANN持续维护,为人工智能研究和应用提供了可靠的基础设施。

frugally-deep - 在C++中运行Keras模型,无需依赖TensorFlow的小型的头文件库
C++GithubKerasTensorFlowfrugally-deep开源项目模型预测
frugally-deep是一个小型的头文件库,允许在C++中运行Keras模型进行预测而无需依赖TensorFlow。它依赖于FunctionalPlus、Eigen和json头文件库,支持复杂的模型拓扑,并显著减小二进制大小。项目特点包括支持多种层类型、节省RAM以及通过并行处理提高预测性能。frugally-deep在单核CPU上表现相对较快,适合内存敏感和需要快速部署的应用。
fondant - 旨在协同构建和共享数据集的开源数据框架
FondantGithub共享操作开源项目数据处理数据框架数据集构建
Fondant是一个开源数据框架,旨在协同构建和共享数据集。它允许用户无需移动源数据即可进行数据初始化、处理和加载,支持可插拔的工作流、自定义组件以及版本追踪与数据浏览。Fondant适用于跨云端环境(如Google Cloud的Vertex和AWS的Sagemaker),使数据处理简单、可扩展,是生产环境中处理和共享数据集的理想选择。
awesome-machine-learning - 机器学习框架与资源汇总 多语言开源项目集锦
Github开源项目数据分析机器学习深度学习自然语言处理计算机视觉
Awesome Machine Learning项目汇集了按编程语言分类的机器学习开源资源。涵盖计算机视觉、自然语言处理、深度学习等领域的框架、库和工具,涉及Python、Java、C++等多种语言。此外还收录相关书籍、课程和博客,为机器学习从业者提供全面参考。项目保持活跃更新,欢迎社区贡献优质资源。
deepdetect - 用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架
APIDeepDetectGithub图像分类开源项目机器学习深度学习
DeepDetect是一个用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架。它专注于易用性和高性能,支持分类、目标检测、分割、回归等任务,适用于图像、文本和时间序列数据。该工具可自动将模型转换为嵌入式平台(如TensorRT、NCNN),无需数据库,所有数据和模型参数均存储在文件系统中。DeepDetect通过JSON格式通信,提供Python和Javascript客户端,易于集成到现有应用中。
machinelearning - 跨平台开源框架,简化.NET应用中的模型开发与部署
GithubML.NET开源框架开源项目机器学习模型训练自定义模型
ML.NET是一个跨平台的开源机器学习框架,使开发者无需机器学习经验即可在.NET应用中构建、训练和部署定制模型。它支持从文件和数据库加载数据,并进行数据转换,具备多种机器学习算法。ML.NET适用于分类、预测和异常检测等多种场景,并兼容TensorFlow和ONNX模型,扩展性强。支持Windows、Linux和macOS操作系统,以及ARM64和Apple M1处理器架构。
grenade - 高效的依赖类型递归神经网络库
GithubGrenadeHaskell卷积神经网络开源项目机器学习递归神经网络
Grenade 是一个高效实用的递归神经网络库,专为 Haskell 语言设计,支持复杂网络的简洁精确定义。几行代码就能指定并初始化一个在 MNIST 数据集上达到约1.5%测试误差的神经网络。Grenade 支持卷积、池化、全连接、LSTM 等多种层类型,内置反向传播和梯度更新功能。基于纯函数设计,允许灵活组合训练函数,甚至实现生成对抗网络。性能依托 hmatrix、BLAS 和 LAPACK,支持并行处理。
fabric - 使用人工智能技术来增强人类的日常活动与挑战的开源框架
AI集成Githubfabric人工智能命令行接口开源框架开源项目热门
Fabric是一个开源框架,主要致力于使用人工智能技术来增强人类的日常活动与挑战。该项目不仅提供了一个丰富的AI使用案例库,即Patterns,还支持自定义模式的创建和应用,以适应各种生活与工作场景。此外,Fabric的命令行接口原生支持,使得用户可以在没有服务器的情况下直接调用AI模型,极大地提高了AI技术的可访问性和实用性。
tt-metal - Python与C++神经网络运算库
GithubGrayskull模组TT-MetaliumTT-NNWormhole模组开源项目神经网络
TT-NN 提供灵活的神经网络运算功能,支持包括ResNet-50和BERT-Large在内的多种模型,能够实现高效的端到端和设备间的数据吞吐量。其兼容N150和N300卡的Wormhole模型,及适用于TT-QuietBox和TT-LoudBox的高性能模型,能满足不同硬件需求。结合TT-Metalium低级编程模型,提供丰富的开发指导和API参考,有助于在Tenstorrent硬件上高效地进行神经网络训练和推理。
TensorLayer - 高性能且灵活的深度学习和强化学习工具库
GithubTensorFlowTensorLayer开源软件开源项目强化学习深度学习
TensorLayer 是一个基于 TensorFlow 的深度学习和强化学习库,为研究人员和工程师提供多种可定制的神经网络层,简化复杂 AI 模型的构建。它设计独特,结合了高性能与灵活性,支持多种后端和硬件,并提供丰富的教程和应用实例。广泛应用于全球知名大学和企业,如谷歌、微软、阿里巴巴等。
awesome-deep-learning - 开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等
Github人工智能大数据开源项目机器学习深度学习神经网络
awesome-deep-learning提供全面的开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等,适合各阶段学习者深入探索。通过更新最新技术和理论,推动知识和技术的不断进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号