Project Icon

MEGABYTE-pytorch

多尺度Transformer模型实现百万字节序列预测

MEGABYTE-pytorch是一个基于PyTorch实现的多尺度Transformer模型,专门用于预测百万字节长度的序列。该项目具有灵活的配置选项,支持多个本地模型,并整合了Flash Attention等先进技术。MEGABYTE-pytorch通过简洁的API接口实现长序列处理、模型训练和文本生成。此外,项目提供了基于enwik8数据集的训练示例,为开发者提供了实用参考。

mGPT - 基于GPT架构的大规模多语种自然语言处理模型
GPTGithubHuggingfaceMegatron多语言模型开源项目模型深度学习自然语言处理
作为一个基于GPT-3架构的多语言处理模型,mGPT具备13亿参数量,覆盖25个语系的61种语言。模型采用Wikipedia和Colossal Clean Crawled Corpus作为训练数据,结合Deepspeed与Megatron框架实现并行计算,在低资源语言处理领域达到与XGLM相当的性能水平。模型训练过程中处理了488亿UTF字符,借助256个NVIDIA V100 GPU完成了为期14天的训练。
Transformers-Recipe - 学习与应用Transformer的指南
AttentionGithubNLPTransformer开源项目强化学习计算机视觉
该指南为自然语言处理(NLP)及其他领域的学习者提供了丰富的Transformer学习资源,包括基础介绍、技术解析、实际实现和应用。通过精选的文章、视频和代码示例,帮助用户深入掌握Transformer模型的理论与实践。
transformers - 免费开源的transformers课程,详解关键概念与实践操作
BERTGithubtransformers多头注意力机制开源项目自注意力机制课程
该课程由软件工程师Peter发起,现正免费且开放源码。内容涵盖transformers的关键概念、实践练习和学术论文剖析。通过YouTube视频讲解和Jupyter笔记本实操,深入学习编码器-解码器架构、自注意力、多头注意力等核心概念,并从零开始构建简单的transformer模型。亦包含如何微调BERT和GPT-2等预训练模型及进行特定任务处理和文本生成。
AiLearning-Theory-Applying - 人工智能领域的全面学习资源
AiLearning-Theory-ApplyingGithubTransformer开源项目机器学习深度学习自然语言处理
AiLearning-Theory-Applying项目提供人工智能领域的全面学习资源,覆盖基础知识、机器学习、深度学习及自然语言处理。项目持续更新,附带详尽注释和数据集,便于理解与操作,助力初学者及研究人员迅速掌握AI理论及应用实践。
pythia-160m - EleutherAI开发的160M参数语言模型 专为NLP研究设计
EleutherAIGithubHuggingfacePythia大语言模型开源项目机器学习模型自然语言处理
Pythia-160M是一个160M参数的英语语言模型,由EleutherAI开发,主要用于自然语言处理研究。该模型在Pile数据集上训练,提供154个中间检查点,便于分析模型行为。虽然主要用于研究目的,但其性能可与同规模的商业模型相媲美。Pythia-160M采用Transformer架构,可通过Hugging Face Transformers库轻松加载使用,适合进一步微调,但不建议直接部署。
speculative-decoding - 推测解码技术,优化大型语言模型推理速度
GithubSpeculative Decoding大语言模型开源项目性能优化推理加速自然语言处理
该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。
jina-bert-flash-implementation - 将BERT与Flash-Attention结合的高效模型实现
BERTFlash-AttentionGPU加速GithubHuggingface开源项目模型模型配置深度学习
本项目展示了一种将Flash-Attention技术与BERT模型相结合的实现方案。内容涵盖了依赖安装指南、参数配置说明和性能优化策略。核心功能包括Flash Attention的应用、局部注意力窗口的实现以及稀疏序列输出。此外,项目还引入了多项可调节的配置选项,如融合MLP和激活检查点,以适应各种训练环境和硬件条件。该实现的目标是提高BERT模型在处理大规模数据集时的训练效率和内存利用率。
gpt2 - 预训练语言模型与自然语言生成技术
GPT-2GithubHuggingface开源项目文本生成机器学习模型自然语言处理预训练模型
这是一个由OpenAI开发的大规模预训练语言模型,基于Transformer架构,通过自监督学习方式在英文语料上训练。模型核心功能是预测文本序列中的下一个词,可用于文本生成及其他自然语言处理任务。支持ONNX部署,便于开发者进行实际应用开发和模型微调。
gpt-neox - 大规模语言模型训练库,支持多系统和硬件环境
DeepSpeedEleutherAIFlash AttentionGPT-NeoXGithubMegatron Language Model开源项目
GPT-NeoX是EleutherAI开发的库,专注于在GPU上训练大规模语言模型。它基于NVIDIA的Megatron,并结合了DeepSpeed技术,提供前沿的架构创新和优化,支持多种系统和硬件环境。广泛应用于学术界、工业界和政府实验室,支持AWS、CoreWeave、ORNL Summit等多个平台。主要功能包括分布式训练、3D并行、旋转和嵌入技术,以及与Hugging Face等开源库的无缝集成。
bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号