Project Icon

robotic-transformer-pytorch

RT1机器人控制Transformer模型的PyTorch实现

本项目是Google Robotics团队RT1(Robotic Transformer)的PyTorch实现版本。RT1是一个结合视觉和自然语言处理的机器人控制Transformer模型。该实现包含MaxViT视觉主干网络和RT1核心模型,支持视频输入和文本指令处理。项目提供简洁API,实现了条件采样和跨注意力等功能,可应用于多种机器人控制场景。

transformers-code - 对Transformers从入门到高效微调的全方位实战指南
GithubNLPTransformers分布式训练开源项目微调模型训练
课程提供丰富的实战代码和案例,从基础入门到高效微调以及低精度和分布式训练。涵盖命名实体识别、机器阅读理解和生成式对话机器人等NLP任务。帮助深入理解Transformers的核心组件和参数微调技术,包括模型优化和分布式训练。适合对Transformers应用和实践感兴趣的学习者。课程在B站和YouTube持续更新,紧跟技术前沿。
TransBTS - 使用Transformer实现多模态脑肿瘤医学图像分割
GithubTransBTSTransBTSV2Transformer多模态数据集开源项目脑肿瘤分割
TransBTS与TransBTSV2采用Transformer技术显著提升多模态脑肿瘤与医学图像体积分割的效率与准确性。项目包括详细的模型实现和相关文献,支持BraTS、LiTS、KiTS等医学图像数据集,并利用Python和Pytorch进行数据预处理、模型训练和测试,支持分布式训练。适用于需要高效精准医学图像分割解决方案的研究人员和工程师。
repeat - 开源自然语言处理库
GithubHuggingfacetransformers人工智能开源项目机器学习模型深度学习自然语言处理
Transformers是一个开源的自然语言处理库,提供了多种预训练模型和工具。该库支持文本分类、命名实体识别和机器翻译等任务,具有良好的文档支持和定期更新特性。研究人员和开发者可以使用Transformers构建和部署NLP应用。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
v3_1_pt_ep1_sft_5_based_on_llama3_1_70b_final_data_20241026 - 揭示新型Transformer模型的实际应用与研究进展
GithubHuggingfacetransformers偏见开源项目模型模型卡环境影响评估
该文档介绍了新型Transformers模型的功能、应用领域与局限性,包含使用指南、训练数据概述、程序步骤、评估方法及其环境影响评估,为读者提供全面的信息参考。
open_x_embodiment - 统一格式机器人数据集和RT-X模型
GithubOpen X-EmbodimentRT-X模型开源项目数据集机器人学习深度学习
Open X-Embodiment项目整合多个开源机器人数据集,采用统一RLDS格式。它提供RT-1-X模型检查点,支持RGB图像输入和7维机械臂动作输出。项目包含数据集可视化和模型推理Colab示例,以及详细使用指南。这一开放资源促进机器人学习研究,简化数据处理和模型应用流程。
ktransformers - 体验前沿LLM推理优化的灵活框架
GPU加速GithubKTransformersLLM推理优化大型语言模型开源项目深度学习框架
KTransformers是一个灵活的Python框架,通过高级内核优化和并行策略增强Transformers性能。框架支持单行代码注入优化模块,提供Transformers兼容接口、OpenAI和Ollama标准RESTful API及简化的ChatGPT风格Web UI。专注本地部署和异构计算优化,KTransformers集成Llamafile和Marlin内核,为LLM推理优化实验提供灵活平台。
iTransformer - 先进的时间序列预测模型,打造SOTA性能
GithubiTransformer人工智能开源项目时间序列预测注意力网络深度学习
iTransformer是一种基于注意力机制的时间序列预测模型,由清华大学和蚂蚁集团研究人员开发。该模型采用倒置Transformer结构,支持多变量和多步长预测。iTransformer引入了可逆实例归一化等技术,旨在提高预测准确性和处理长序列数据的能力。这个开源项目为时间序列分析提供了新的研究方向。项目提供Python实现,支持使用PyTorch框架。用户可通过pip安装并轻松集成到现有的时间序列分析工作流程中。该项目还包括实验性功能,如二维注意力和傅里叶变换增强版本,为研究人员提供了探索和改进的空间。
ByteTransformer - 为BERT类Transformer优化的高性能推理库
BERTByteTransformerGithubNVIDIA GPUTransformer开源项目高性能
ByteTransformer是一个为BERT类Transformer优化的高性能推理库,支持Python和C++ API,兼容固定长度和可变长度Transformer。通过对BERT例程中的QKV编码、软最大值、前馈网络、激活、层归一化和多头注意力机制进行优化,ByteTransformer为字节跳动的内部推理系统提升了性能。基准测试结果显示,相较于PyTorch、TensorFlow、FasterTransformer和DeepSpeed,ByteTransformer在A100 GPU上的推理速度更快。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号