Project Icon

TagAnomaly

多时间序列异常检测数据标注与可视化工具

TagAnomaly是一款开源的多时间序列异常检测数据标注工具。它提供直观的可视化界面,支持用户在时间序列上选择和检查异常点,比较不同类别的时间序列,并利用Twitter异常检测算法提供参考。该工具还支持观察类别间分布变化,有助于创建高质量的异常检测模型训练数据集。TagAnomaly适用于需要处理多类别时间序列数据的数据科学和分析项目。

anomalize - R语言时间序列异常检测工具
AnomalizeGithubR语言开源项目异常检测数据分析时间序列
anomalize是一个R语言包,用于时间序列异常检测。它提供时间序列分解、异常检测和重组等功能,可有效分离正常数据和异常数据。该工具支持直观的可视化,并可通过清理异常值提高预测准确性。虽然核心功能已被timetk包替代,但anomalize仍保留原有功能以支持现有代码。
Anomaly-Transformer - 创新时间序列异常检测模型的新方法
Anomaly-TransformerGithub开源项目异常检测无监督学习时间序列注意力机制
Anomaly-Transformer是一种时间序列异常检测模型,利用关联差异作为可区分标准,并结合Anomaly-Attention机制和极小极大策略提高检测效果。该模型在多个基准数据集上展现出优秀性能,为无监督时间序列异常检测领域提供了新的解决方案。
Anomify - 实时异常检测平台 提升指标监控效率
AI工具Anomify告警系统实时分析异常检测指标监控
Anomify为实时异常检测平台,致力于优化指标监控流程。平台采用先进算法分析数据,实时检测异常并告警,减少误报并加速问题解决。适用对象包括管理者、SRE和DevOps工程师,支持多种时间序列数据库和通知方式,有助于提升系统性能监控效率,快速识别和处理问题。
timetk - R语言时间序列分析与可视化工具包
GithubR语言timetk开源项目数据可视化时间序列分析机器学习
timetk是一个功能丰富的R语言时间序列分析工具包。它提供数据可视化、处理和特征工程功能,支持交互式和静态绘图、时间序列机器学习、异常检测和聚类分析。与同类包相比,timetk功能更全面、易用性更高,可简化时间序列分析和预测建模流程。该包适用于需要高效处理和分析时间序列数据的研究人员和数据科学家。
anomalib - 视觉异常检测算法开发与部署工具库
AnomalibGithubOpenVINO基准测试开源项目异常检测深度学习
Anomalib是一个专注于视觉异常检测的开源深度学习库。它提供多种先进算法实现,支持模型训练、推理、基准测试和超参数优化。该库基于Lightning框架开发,简化了代码结构,并支持模型导出为OpenVINO格式以加速推理。Anomalib还包含便捷的推理工具,方便用户快速部署异常检测模型。其模块化设计和完善的文档使其成为研究和应用视觉异常检测的理想工具。
taggui - 高效智能的AI图像数据集标注应用
AI模型GithubTagGUI图像标签开源项目数据集创建自动生成标签
TagGUI是一款跨平台桌面应用,专为AI模型数据集制作而设计。该工具提供快速标记、标签自动完成和Stable Diffusion令牌计数等功能。支持CogVLM、LLaVA等模型的自动描述生成,并具备批量标签操作和高级图像过滤能力。TagGUI简化了图像标注流程,提高了AI数据集准备的效率。
tods - 多变量时间序列的自动化异常检测系统
GithubTODS多变量数据开源项目异常检测时间序列自动机器学习
TODS是一个专注于多变量时间序列数据异常检测的全栈自动化机器学习系统。它提供数据处理、时间序列处理、特征分析等全面模块,支持点级、模式级和系统级三种检测场景。TODS的主要特点包括全栈机器学习功能、广泛的算法支持,以及能够自动搜索最佳模块组合构建最优管道的自动化机器学习能力。
InsTag - LLM监督微调数据分析与优化工具
GithubInsTagLLM开源项目数据分析标签系统监督微调
InsTag是大型语言模型监督微调数据分析工具,通过标记和分类用户查询,量化评估数据多样性与复杂性。该工具为研究人员提供模型训练优化依据,基于InsTag分析结果,仅需6K样本即可训练出TagLM模型。在MT-Bench评测中,TagLM表现优于多个开源LLM,凸显了InsTag在提升LLM训练效率方面的价值。
egads - 开源时间序列异常检测Java库
EGADSGithubJava库开源软件开源项目时间序列异常检测自动化监控
EGADS是一个开源Java库,用于自动检测大规模时间序列数据中的异常。它采用模块化架构,包含时间序列建模和异常检测两个主要组件,支持多种模型和算法。EGADS可扩展性强,易于集成到现有监控系统中,适用于多种应用场景。该库仅依赖Java,部署简单,为大规模时间序列异常检测提供高效解决方案。
anomaly-detection-resources - 异常检测领域的综合学习资源库
ADBenchGithubPyOD开源项目异常检测数据挖掘机器学习
本项目汇集了异常检测领域的全面学习资源,包括书籍、论文、课程、数据集和工具库。涵盖多变量数据、时间序列和图网络等多种异常检测类型,并提供关键算法、高维数据和集成方法等研究方向的资料。同时列出重要会议和期刊,为异常检测研究者和实践者提供了宝贵的资源库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号