Project Icon

sklearn-onnx

将scikit-learn模型转换为ONNX格式的解决方案

sklearn-onnx是一个工具,用于将scikit-learn模型转换为ONNX格式,并使用ONNX Runtime进行高性能评估。所有转换器都经过ONNX Runtime测试,用户还能注册外部转换器转换含外部库模型的scikit-learn管道。项目文档包括教程和常见问题解答,帮助用户快速上手。可通过PyPi或源码安装,支持多种操作系统,以提高机器学习模型性能。

mlxtend - Python机器学习日常任务扩展库
GithubPython库mlxtend开源软件开源项目数据科学机器学习
mlxtend扩展了Python的机器学习功能,专注于提供数据科学日常任务中的实用工具。库中包含多种分类器、集成方法和决策区域可视化功能。它支持pip和conda安装,适合机器学习研究和实践。mlxtend提供详细文档和示例,有助于简化数据科学工作流程。
CNTK - 深度学习工具包,支持多种模型,包括DNN、CNN和RNN
CNTKGithubONNX开源开源项目深度学习神经网络
CNTK,微软的开源深度学习工具包,支持多种模型,包括DNN、CNN和RNN。具备自动微分和GPU并行化等高级功能,简化开发和训练流程,并完美支持ONNX,兼容多种AI框架。
ai-edge-torch - PyTorch模型转TensorFlow Lite的开源解决方案
AI Edge TorchGithubPyTorchTensorFlow Lite开源项目模型转换移动设备部署
ai-edge-torch是一个开源Python库,用于将PyTorch模型转换为TensorFlow Lite格式。它支持在Android、iOS和IoT设备上本地运行模型,提供广泛的CPU支持和初步的GPU、NPU支持。该项目还包含生成式API,用于优化大型语言模型在设备端的性能。ai-edge-torch与PyTorch紧密集成,为边缘AI开发提供了实用的工具。
mlops-python-package - MLOps Python工具包,简化机器学习工程实践
GitHub ActionsGithubMLOpsPython包开源项目自动化工具软件开发实践
这是一个集成多种MLOps最佳实践的Python代码库,旨在优化机器学习工程流程。该工具包提供了模型注册、实验跟踪和实时推理等核心功能,同时支持自动化任务、CI/CD集成、配置管理和数据处理等辅助功能。通过灵活且稳健的设计,这个工具包可以帮助开发者更高效地构建和部署MLOps项目,简化整个机器学习生命周期管理。
sagemaker-python-sdk - 使用常见深度学习框架和Amazon优化算法在SageMaker上训练和部署模型
Apache MXNetGithubSageMakerSageMaker Python SDKTensorFlow开源项目机器学习
SageMaker Python SDK是一个开源库,用于在Amazon SageMaker上训练和部署机器学习模型。支持包括Apache MXNet和TensorFlow在内的主流深度学习框架,并优化了适用于SageMaker和GPU训练的Amazon算法。还支持用户使用自定义的Docker容器进行模型的训练和托管。提供详细的文档和API参考指南,介绍如何安装、使用和配置该SDK。兼容操作系统包括Unix/Linux和Mac,并支持Python 3.8到3.11版本。
openmodelz - 开源平台简化机器学习模型的部署和扩展
GithubOpenModelZ开源开源项目机器学习模型部署自动扩展
OpenModelZ是一个开源平台,简化了机器学习模型的部署和扩展过程。它支持将模型部署到任何集群,提供自动扩展、多框架兼容、Gradio/Streamlit/Jupyter集成等功能。用户可从单机起步,轻松扩展到集群,每个部署都有独立子域名。该平台自动处理基础设施,让开发者专注于模型本身。
scikit-llm - 无缝集成大型语言模型到Scikit-Learn,提升文本分析能力
ChatGPTGithubScikit-LLM开源软件开源项目文本分析机器学习
Scikit-LLM通过将ChatGPT等强大语言模型无缝集成到Scikit-Learn中,增强文本分析任务效果。该工具支持零样本文本分类,并提供简单的Python代码实现快速部署。项目为数据科学家和开发者提供高效的文本分析解决方案,支持快速安装和详细文档,社区反馈和支持也是其重要组成部分。
machinelearning - 跨平台开源框架,简化.NET应用中的模型开发与部署
GithubML.NET开源框架开源项目机器学习模型训练自定义模型
ML.NET是一个跨平台的开源机器学习框架,使开发者无需机器学习经验即可在.NET应用中构建、训练和部署定制模型。它支持从文件和数据库加载数据,并进行数据转换,具备多种机器学习算法。ML.NET适用于分类、预测和异常检测等多种场景,并兼容TensorFlow和ONNX模型,扩展性强。支持Windows、Linux和macOS操作系统,以及ARM64和Apple M1处理器架构。
tslearn - Python时间序列分析机器学习库
GithubPython库tslearn开源项目数据预处理时间序列分析机器学习
tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。
training_extensions - OpenVINO框架助力快速训练和部署计算机视觉模型
GithubOpenVINO开源项目模型训练深度学习计算机视觉迁移学习
OpenVINO Training Extensions是一个专注计算机视觉的低代码迁移学习框架。它基于PyTorch和OpenVINO工具包开发,提供简洁API和CLI命令,支持分类、检测、分割等多种任务的模型训练、推理和部署。该框架具备自动配置、分布式训练、混合精度等功能,可快速构建高效准确的视觉AI模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号