Project Icon

python-machine-learning-book-3rd-edition

Python与机器学习代码实例——从基础到高级应用

《Python Machine Learning》第三版全面覆盖了数据预处理、分类、回归、深度学习和强化学习等机器学习领域的核心概念。书中提供了Scikit-Learn和TensorFlow的代码示例,帮助读者掌握模型评估、超参数优化和集成学习等技术。本书适合初学者和进阶用户,通过代码仓库可以获得丰富的实践经验。出版信息:Packt Publishing, 2019年12月12日,ISBN-13: 978-1789955750。

key-book - 深入理解机器学习理论的关键概念与应用
DatawhaleGithubKey-book参考笔记开源项目机器学习机器学习理论导引
《钥匙书》是《机器学习理论导引》的补充读物,帮助读者理解机器学习中的七大关键概念:可学性、复杂度、泛化界、稳定性、一致性、收敛率和遗憾界。通过详细的证明补充、案例解析和概念扩展,解决读者在学习中遇到的难题,提供实时更新的在线阅读资源,非常适合深入研究机器学习理论的读者。
machine_learning_basics - 纯Python实现机器学习算法 助力深入理解基础原理
GitHubGithubPython开源项目数据预处理机器学习算法实现
该开源项目提供多种机器学习算法的纯Python实现,包括线性回归、决策树和k-means聚类等。项目注重展示算法底层结构,而非追求最高效率。另外还包含数据预处理教程,涵盖图像和数值/分类数据集处理。代码支持在线运行,便于快速实验。作为机器学习入门资源,适合想深入理解算法原理的学习者。
dmls-book - 全面设计可靠且适应性强的机器学习系统
Chip HuyenGithubMLOps开源项目机器学习系统生产环境设计
本书介绍了设计可靠、可扩展和易维护的机器学习系统的全面方法。内容涵盖数据工程、指标选择、模型部署、监控和自动化流程,同时探讨了负责任AI的重要性。适合工程师、数据科学家和技术领导者阅读,帮助他们在实际问题中应用机器学习技术。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
distributed-ml-patterns - 构建并优化分布式机器学习系统的方法
Argo WorkflowsDistributed Machine Learning PatternsGithubKubeflowKubernetes分布式机器学习开源项目
《Distributed Machine Learning Patterns》一书详细介绍了如何构建可扩展和高可靠性的机器学习系统。内容涵盖数据摄取、分布式训练、模型服务等方面,以及如何利用Kubernetes、TensorFlow、Kubeflow和Argo Workflows实现任务自动化。通过该书,读者将掌握关键概念与实际案例,并学会在大规模集群上管理和监控机器学习任务。本书适合具备基础机器学习知识的数据分析师、数据科学家和软件工程师。
pyprobml - 提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表
GithubPythonnotebookspyprobml图像重现开源项目机器学习
pyprobml项目提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表。该项目采用numpy、scipy、matplotlib、sklearn等标准库,以及JAX、Tensorflow和Torch等深度学习框架。用户可在本地运行或通过Colab使用,适合需要高性能计算的用户也支持Google Cloud Platform。本项目目前处于维护模式,有意贡献者可查看项目官网的贡献指南。
learn-python3 - 系统化学习Python 3编程的在线教程
GithubPython代码学习资源开源项目教程编程语言
该教程提供了系统化的Python 3学习资源,涵盖核心概念、语法和实践应用。内容包括数据类型、控制流、函数和面向对象编程等。教程结构循序渐进,配有示例和练习,适合零基础学习者和希望提升技能的开发者使用。
machine_learning_examples - 机器学习示例和教程的精选集合
GithubGoogle ColabTensorflow 2.0data_sciencedeep_learning_coursesmachine_learning_examples开源项目
本页面汇集了多种机器学习的实例和教程,涵盖自然语言处理、时间序列分析、金融工程和深度学习等领域。用户可以通过链接访问详细的课程,每个课程的代码都存放在相应的文件夹中,便于查找和学习。特别指出TensorFlow 2.0及以后的代码主要在Google Colab上,建议通过克隆而非分叉仓库来保持代码的最新状态。
Machine-Learning-is-ALL-You-Need - 实现流行机器学习和深度学习算法的各种方法
GithubMachine LearningPython代码实现开源项目深度学习罗辑学习
这个仓库致力于使用纯Python和各种开源框架实现热门的机器学习和深度学习算法,涵盖分类、回归、强化学习、计算机视觉、自然语言处理和图神经网络等多个领域。提供灵活的代码切换选项,多种实现方法可以帮助用户深入理解每种算法的内部机制以及成功原因。
handson-unsupervised-learning - Python实现无监督学习的实用指南
GithubPythonTensorFlowscikit-learn开源项目无监督学习机器学习
该项目为Python无监督学习提供实践指南,介绍scikit-learn和TensorFlow框架处理未标记数据的方法。涵盖聚类、降维、生成模型等算法,并提供代码示例。项目包含Windows、macOS环境配置说明,支持GPU加速。内容涉及模式发现、异常检测、自动特征工程等应用,适合机器学习从业者参考学习。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号