Project Icon

BARS

推荐系统开放基准测试项目

BARS项目致力于解决推荐系统领域缺乏统一基准测试的问题。它通过开放式基准测试提高研究可重复性和结果一致性。目前涵盖CTR预测和候选项匹配任务,未来将扩展到列表重排序和多任务推荐领域。该项目鼓励学术界和业界参与,共同推动推荐系统研究的进步。

ann-benchmarks - 开源高维近似最近邻搜索算法基准测试平台
ANN算法Github基准测试开源项目性能比较近邻搜索高维空间
ann-benchmarks是一个开源的高维近似最近邻(ANN)搜索算法评估平台。该项目提供预生成数据集、Docker容器和测试套件,支持对多种ANN算法进行客观的基准测试。目前已包含Annoy、FAISS、NMSLIB等主流算法,并通过性能对比结果和可视化图表展示各算法特性。研究人员和工程师可基于此平台选择适合特定场景的ANN算法,推动相关技术的优化和应用。
torchrec - 旨在提供大规模推荐系统所需的常见稀疏性和并行性原语的PyTorch库
CUDAFBGEMMGithubPyTorchTorchRec开源项目推荐系统
TorchRec是一个专为大规模推荐系统设计的PyTorch库,提供稀疏性和并行性解决方案。它支持多种嵌入表分片策略,并能自动优化分片计划。通过流水线训练和优化内核,提高模型性能。还支持量化训练和推理,包含多个验证的模型架构和数据集示例,适用于需要高性能和扩展性的推荐系统项目。
Awesome-Recsys - 推荐系统领域顶级会议论文资源库
Github人工智能开源项目推荐系统数据挖掘机器学习深度学习
Awesome-Recsys项目汇集推荐系统领域顶级会议论文,包括SIGIR、RecSys、ICLR等重要会议的最新研究成果。该资源库定期更新,提供论文标题和链接,方便研究人员和从业者快速了解领域进展,获取感兴趣的研究内容。
RES-Interview-Notes - 推荐系统算法与实践全面指南
Github协同过滤开源项目推荐系统机器学习深度学习矩阵分解
RES-Interview-Notes项目全面涵盖推荐系统各个方面,包括基础理论、传统算法、深度学习模型及工程实践。内容涉及协同过滤、矩阵分解等经典方法,以及AutoRec、NeuralCF等前沿模型。同时探讨了系统评估和落地实施,为推荐算法工程师提供系统学习资料。
RecAI - 衔接大语言模型和推荐系统
AI代理GithubLLM4RecRecAI开源项目推荐系统深度学习
RecAI 项目旨在通过整合大规模语言模型 (LLMs) 开发更先进的推荐系统,主要提升交互性、可解释性和控制性。项目研究了多种技术,包括推荐 AI 代理、个性化提示、语言模型微调、模型解释器和评价系统。目标是通过全面的方法,解决 LLM4Rec 在实际应用中的需求,打造更加智能和可信赖的推荐系统。
recommenders-addons - 大规模推荐系统中的动态嵌入技术增强体验
GPU加速GithubTensorFlow Recommenders Addons动态嵌入技术大规模训练开源项目推荐系统
TensorFlow Recommenders Addons通过引入动态嵌入技术,使TensorFlow更适合搜索、推荐和广告模型的训练,全面兼容TensorFlow优化器和CheckPoint功能,支持GPU上的训练和推理。项目增强了推荐系统性能,解决了哈希冲突问题,并提供多种动态嵌入存储选项(如cuckoohash_map和Redis)。支持TF serving和Triton Inference Server,以便在大规模环境中部署和评估复杂推荐模型。
opencompass - 开源大型语言模型评估平台
CompassHubCompassKitCompassRankGithubOpenCompass大模型评估开源项目
OpenCompass 2.0集成CompassKit、CompassHub和CompassRank三大关键组件,致力于实现大型语言模型评估的全面性、开放性和可复现性。平台特色包括全面的模型和数据集支持、高效的分布式评估系统、多样化的评估方法以及高度可扩展的模块化结构。
Merlin - GPU加速推荐系统解决方案 助力大规模数据处理与模型训练
GPU加速GithubNVIDIA Merlin开源项目推荐系统深度学习特征工程
Merlin是NVIDIA开发的开源库,为推荐系统提供GPU加速解决方案。它包含多个组件如NVTabular和HugeCTR,支持大规模数据处理、特征工程、模型训练和部署。Merlin能处理数百TB数据,通过GPU加速提升系统性能。它兼容TensorFlow、PyTorch等框架,便于构建和优化推荐模型。
MultiBench - 多模态学习的多尺度标准基准
BenchmarkGithubMultiBenchMultimodal学习开源项目数据集深度学习
MultiBench是一个系统化、统一的大规模基准,用于多模态表征学习,覆盖15个数据集、10种模态、20个预测任务和6个研究领域。它提供自动化的端到端机器学习管道,简化数据加载、实验设置和模型评估,确保在真实世界中的适用性和鲁棒性。
cornac - 多模态推荐系统比较框架
CornacGithub多模态开源项目推荐系统机器学习辅助数据
Cornac是一个多模态推荐系统比较框架,支持文本、图像等辅助数据。它便于快速实验和实现新模型,兼容TensorFlow、PyTorch等库。Cornac实现了协同过滤、内容推荐等多种算法,支持高效近似最近邻搜索。框架还提供简单的模型部署方式,有助于构建推荐系统应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号