Project Icon

wav2vec2-xls-r-300m-ftspeech

基于XLS-R-300m的丹麦语语音识别模型 使用FTSpeech数据集微调

该丹麦语自动语音识别模型基于wav2vec2-xls-r-300m在FTSpeech数据集上微调。模型利用1,800小时丹麦议会演讲转录数据训练,在Danish Common Voice 8.0和Alvenir测试集上分别实现17.91%和13.84%的词错误率(WER)。这一性能表明,该模型为丹麦语语音识别任务提供了有效的解决方案。

wav2vec2-xls-r-1b-ca-lm - 基于先进技术的加泰罗尼亚语语音识别模型
GithubHuggingfacewav2vec2-xls-r-1b-ca-lm开源项目数据集模型模型评估自动语音识别训练过程
此模型是在facebook/wav2vec2-xls-r-300m的基础上微调的,专注于加泰罗尼亚语自动语音识别。通过使用Mozilla Common Voice 8.0及其他数据集进行优化训练,该模型在加泰罗尼亚口音识别上展现出高效性能。适用于需要精准语音识别的场景,尽管资源稀缺的方言可能效果较差。模型精度得益于优化后的学习率和批量大小,是语音识别技术发展的重要里程碑。
wav2vec2-conformer-rope-large-960h-ft - Wav2Vec2 Conformer模型在Librispeech数据集上的语音识别应用
ConformerGithubHuggingfaceLibriSpeechWav2Vec2开源项目模型自然语言处理语音识别
这是一个基于Wav2Vec2 Conformer架构的语音识别模型,采用旋转位置嵌入技术,在Librispeech数据集的960小时音频上完成预训练和微调。模型在Librispeech测试集上表现优异,'clean'和'other'子集的词错误率分别为1.96%和3.98%。支持16kHz采样的语音输入,适用于精确的语音转文本任务。
wav2vec2-large-xls-r-300m-Urdu - 基于wav2vec2的乌尔都语语音识别模型
Common VoiceGithubHuggingfaceUrduwav2vec2开源项目模型模型微调语音识别
这是一个基于wav2vec2-xls-r-300m在Common Voice 8数据集上微调的乌尔都语语音识别模型。模型在测试集上达到39.89%的词错误率和16.7%的字符错误率。通过200轮训练,采用线性学习率调度和Adam优化器。模型支持简单的Python代码推理,并可与语言模型集成以提升性能。
wav2vec2-base - Facebook开发的语音表征学习模型实现低资源语音识别
GithubHuggingfaceWav2Vec2开源项目模型深度学习自监督学习语音识别语音预训练
Wav2Vec2-Base是Facebook开发的语音预训练模型,基于16kHz采样语音音频。该模型通过掩蔽输入语音的潜在空间和解决对比学习任务,学习语音表征。在LibriSpeech基准测试中,即使只使用少量标注数据,也能取得优异成绩,证明了低资源语音识别的可行性。研究人员可以利用此模型进行微调,应用于不同的语音识别任务。
wav2vec2-large-xlsr-53-hungarian - 基于XLSR-53微调的匈牙利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53匈牙利语开源项目模型语音识别
该模型基于wav2vec2-large-xlsr-53在匈牙利语语音数据上微调而来,在Common Voice测试集上实现31.40%的词错误率和6.20%的字符错误率,性能优于同类模型。支持16kHz采样率的语音输入,无需额外语言模型即可使用。开发者可通过HuggingSound库或自定义脚本轻松集成该模型,实现匈牙利语语音识别功能。
wav2vec2-large-xlsr-53-japanese - 基于Wav2Vec2的日语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目日语模型语音识别
该模型是在facebook/wav2vec2-large-xlsr-53基础上,使用日语语音数据集微调而来的语音识别模型。在Common Voice日语测试集上,其词错误率(WER)为81.80%,字符错误率(CER)为20.16%,优于同类模型。它可直接用于日语语音转文本,无需额外语言模型。模型要求输入音频采样率为16kHz。
w2v-xls-r-uk - 基于XLS-R的乌克兰语语音识别模型展现卓越性能
Common VoiceGithubHuggingfaceUkrainianWav2Vec2开源项目模型自然语言处理语音识别
w2v-xls-r-uk是一款优化的乌克兰语语音识别模型,基于wav2vec2-xls-r-300m架构。经Common Voice 10.0数据集训练,结合语言模型后词错误率仅为4.63%。模型支持标点符号识别,并有活跃的社区支持。为获取最佳性能,建议使用其最新版本。该模型可广泛应用于语音转文本、实时字幕生成等场景,为乌克兰语自然语言处理任务提供强大支持。
wav2vec2-large-xlsr-53-persian - 基于XLSR-53微调的开源波斯语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型波斯语语音识别
该开源项目提供了一个基于XLSR-53的波斯语语音识别模型。通过在Common Voice数据集上微调,模型达到30.12%词错误率和7.37%字符错误率,超越同类方案。模型支持16kHz采样率语音直接识别,无需额外语言模型。项目包含完整使用指南和评估脚本,方便研究与应用。
wav2vec2-large-xlsr-53-italian - XLSR-53微调的开源意大利语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目意大利语模型语音识别
这是一个基于Facebook的wav2vec2-large-xlsr-53模型,在Common Voice 6.1意大利语数据集上微调的语音识别模型。模型在测试集上达到9.41%的词错误率和2.29%的字符错误率。支持直接处理16kHz采样的语音输入,无需额外语言模型。项目提供了详细的使用说明和评估脚本,便于研究人员快速应用和测试。
wav2vec2-large-xlsr-malayalam - 基于wav2vec2的马来亚拉姆语语音识别模型
GithubHuggingfaceMalayalamWav2Vec2XLSR开源项目模型模型微调语音识别
这个项目是基于wav2vec2-large-xlsr-53模型针对马来亚拉姆语优化的语音识别系统。利用多个马来亚拉姆语语音数据集训练,测试集词错误率达28.43%。模型支持16kHz采样的语音输入,无需额外语言模型。项目提供了使用指南、评估方法和训练流程,便于部署和进一步改进。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号