Project Icon

distill-sd

更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成

基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。

stable-diffusion-x4-upscaler - 基于稳定扩散技术的AI图像4倍放大模型
GithubHuggingfaceStable Diffusion上采样人工智能图像生成开源项目机器学习模型
stable-diffusion-x4-upscaler是一个开源的AI图像放大模型,基于稳定扩散技术开发。它可以将图像分辨率提高4倍,同时保持图像质量。该模型支持文本引导,能根据描述优化放大效果。采用潜在扩散模型技术,在1000万张高分辨率图像上训练。适用于图像分辨率提升、艺术创作和图像编辑等领域。
automatic - 稳定扩散和其他基于扩散的生成图像模型的高级实现
GithubSD.NextStable Diffusion多平台开源项目扩展功能模型支持
该项目提供了多种后端和用户界面、高级扩展功能,支持多种扩散模型并具有跨平台兼容性。包括文本、图像和视频处理的内置控制,优化处理性能,支持最新的torch技术。具有企业级日志记录和现代化UI,兼容Windows、Linux、MacOS等系统,支持nVidia、AMD和IntelArc等硬件平台。自动更新与依赖管理功能简化了安装和更新过程,确保在多种使用场景下性能最佳。
TCD - 新型少步采样蒸馏技术用于高质量图像生成
GithubLoRATCD图像生成开源项目扩散模型生成AI
TCD是一种创新的蒸馏技术,可将预训练扩散模型的知识提炼为高效的少步采样器。该技术具有灵活的NFE、优异的生成质量、可调节的细节程度和广泛的适用性。TCD无需对抗训练即可实现高质量的少步生成,有效避免了模式崩溃问题。项目开源了推理代码和基于SDXL Base 1.0蒸馏的TCD-SDXL模型,可与多种现有模型和技术无缝集成。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
stable-video-diffusion-img2vid - AI模型将静态图像转换为动态短视频的创新技术
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是一种先进的AI模型,可将静态图像转化为短视频。该模型利用潜在扩散技术,生成14帧、576x1024分辨率的视频片段。在视频质量方面表现出色,主要应用于生成模型研究和安全部署等领域。尽管存在视频时长短、可能缺乏动作等限制,但该模型为图像到视频转换技术带来了新的可能性。目前仅限于研究用途,不适用于生成事实性或真实性内容。
sd-controlnet-mlsd - 结合M-LSD直线检测优化Stable Diffusion的图像生成
ControlNetGithubHuggingfaceM-LSDStable Diffusion开源项目扩散模型条件输入模型
该项目介绍了ControlNet神经网络结构,通过加入M-LSD直线检测等条件来控制大规模扩散模型,适用于Stable Diffusion。ControlNet能够在小数据集下进行稳健学习,且可在个人设备上快速训练。项目提供了多种检查点,涵盖边缘检测、深度估计和关键点检测,丰富了大规模扩散模型的控制方式,有助于推进相关应用的发展,最佳效果在Stable Diffusion v1-5结合使用时体现。
MultiDiffusion - 基于预训练模型的多功能可控的图像生成框架
GithubMultiDiffusion可控生成图像生成开源项目扩散模型文本到图像
MultiDiffusion 是一个统一框架,通过预训练的文字转图像扩散模型,实现多功能且可控的图像生成,无需进一步训练或微调。该框架支持用户使用各种控制信号,如纵横比和空间引导信号,生成高质量、多样化的图像。MultiDiffusion 优化了多重扩散生成过程,使用一组共享参数或约束,支持局部和全局编辑,适用于如烟雾、火焰和雪等半透明效果。
multidiffusion-upscaler-for-automatic1111 - 生成与图像放大技术,适用于低显存环境
ControlNetDemofusionGithubTiled DiffusionVAEsd-webui开源项目
通过瓦片扩散与VAE技术,该扩展支持在有限显存条件下生成或放大超大图像(≥2K)。主要功能包括瓦片VAE、瓦片扩散、区域提示控制和噪声反演,并兼容ControlNet、StableSR和SDXL等高级功能。项目免费开放使用和修改,自2023.3.28起代码不得用于商业贩售。访问wiki页面获取更多详细文档和教程。
stable-video-diffusion-img2vid-xt - 图像到视频转换模型Stable Video Diffusion实现动画生成
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是Stability AI开发的扩散模型,可将静态图像转换为短视频。该模型生成25帧、576x1024分辨率的视频片段,视频质量优于同类产品。适用于艺术创作、教育工具等场景,支持商业和非商业用途。模型存在视频较短、不支持文本控制等局限性。开发者可通过GitHub上的开源代码使用该模型。
stable-diffusion-inpainting - 开源AI模型实现图像修复和高质量生成
AI绘画GithubHuggingfaceStable Diffusion修复绘画图像生成开源项目文本转图像模型
Stable Diffusion Inpainting是一个开源的文本到图像生成和修复模型。它基于潜在扩散技术,可根据文本描述生成高质量图像,并能对现有图像进行智能修复。该模型在LAION-Aesthetics数据集上训练,支持512x512分辨率输出。适用于艺术创作、设计等领域,但不应用于生成有害内容。目前主要支持英文输入,其他语言效果可能有限。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号