Project Icon

oneformer_ade20k_swin_large

OneFormer 多任务通用图像分割模型

OneFormer是一个基于ADE20k数据集和Swin大型骨干网络训练的通用图像分割框架。它通过单一模型和单次训练,实现了语义、实例和全景分割多任务处理,性能超越现有专用模型。该模型采用任务令牌技术,实现了训练时的任务引导和推理时的任务动态适应。OneFormer为图像分割领域带来了新的解决方案,可应用于多种图像分割任务。

clipseg-rd64-refined - 基于文本和图像提示的先进图像分割策略
CLIPSegGithubHuggingface一样本学习图像分割复杂卷积开源项目模型零样本学习
该模型引入先进的复杂卷积技术,支持零样本和单样本图像分割。结合文本与图像提示,该模型在图像分析中提供高效且准确的分割性能。
sam2-hiera-large - 基于深度学习的高性能图像分割模型
GithubHuggingfaceSAM2图像分割开源项目掩码生成模型模型推理自动掩码生成
SAM2-Hiera-large是Meta公司开发的SAM2模型大型变体,专注于图像分割任务。该模型支持基于边界框的预测和自动掩码生成,可用于处理图像和视频对象分割。开发者可通过Python接口调用模型,实现高效的分割效果。项目提供了详细的使用示例和丰富的资源,方便用户深入了解和应用SAM2技术。
RestoreFormer - 盲脸修复的跨域注意力模型
GithubRestoreFormer++人脸修复开源项目深度学习盲恢复高质量
RestoreFormer利用多头交叉注意力层实现高质量盲脸修复,其特点是从高质量字典中提取关键-值对用于面部重建。2023年9月项目添加了在线演示和更用户友好的推理方法,2023年1月新增了测试数据集。源代码和资源在GitHub提供,并包含详细的数据集准备和模型训练指南,支持多种评估指标。
sam-vit-huge - SAM 革新性的通用图像分割模型
AI模型GithubHuggingfaceSAM图像分割开源项目模型深度学习计算机视觉
Segment Anything Model (SAM) 是Facebook Research开发的先进图像分割模型。它能根据点或框等简单提示生成精确的对象蒙版,在1100万图像和11亿蒙版的大规模数据集上训练。SAM具备强大的零样本迁移能力,可应用于多种分割任务。模型由视觉编码器、提示编码器和蒙版解码器构成,既可生成单个目标蒙版,也能自动分割整图所有对象。SAM为计算机视觉领域带来了新的可能性。
face-parsing - Segformer语义分割模型实现精准人脸解析
CelebAMask-HQGithubHuggingfacenvidia/mit-b5transformers开源项目模型语义分割面部解析
face-parsing是一个基于Segformer的语义分割模型,专注于人脸解析任务。该模型由nvidia/mit-b5在CelebAMask-HQ数据集上微调,可精确识别和分割19个人脸关键区域。支持Python和浏览器环境,提供详细使用指南。适用于人脸分析和编辑应用,但使用时需考虑潜在的社会偏见问题。
upernet-convnext-small - 高效语义分割框架融合ConvNeXt技术
ConvNeXtGithubHuggingfaceUperNet图像分割开源项目模型计算机视觉语义分割
UperNet是一种结合ConvNeXt骨干网络的语义分割框架,融合了特征金字塔网络(FPN)和金字塔池化模块(PPM)。它能为每个像素生成语义标签,适用于场景理解和图像分割等计算机视觉任务。该模型提供多种预训练版本,可根据具体需求应用于不同场景。UperNet的设计旨在提高语义分割的准确性和效率,为研究人员和开发者提供了强大的图像分析工具。
detr-resnet-50-panoptic - DETR模型:结合ResNet-50的端到端目标检测与全景分割
DETRGithubHuggingfaceTransformer开源项目模型目标检测计算机视觉语义分割
DETR-ResNet-50是一种创新的目标检测模型,融合了Transformer和卷积神经网络技术。该模型在COCO数据集上训练,支持端到端的目标检测和全景分割。通过100个对象查询机制,DETR实现了高效准确的目标识别。在COCO 2017验证集上,模型展现出优秀性能:框AP为38.8,分割AP为31.1,全景质量(PQ)达43.4。这一模型为计算机视觉任务提供了新的解决方案。
mindformers - 全流程大模型开发套件
GithubMindSporeTransformers大模型开源项目自然语言处理计算机视觉
MindFormers是基于MindSpore的大模型开发套件,提供全流程开发能力。支持LLama2、GLM2、BERT等主流Transformer模型和文本生成、图像分类等任务。具备并行训练、灵活配置、自动优化等特性,可实现从单卡到集群的无缝扩展。提供高阶API和预训练权重自动下载,便于AI计算中心快速部署。
lang-seg - 语言驱动的零样本语义图像分割模型
CLIPGithubLSeg开源项目计算机视觉语义分割零样本学习
LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。
OneTrainer - 多功能稳定扩散训练平台
GithubOneTrainerStable Diffusion图像增强开源项目数据集工具训练方法
OneTrainer支持多种Stable Diffusion模型、训练方法和格式,提供全面的训练功能。其主要特色包括自动备份、图像增强、Tensorboard集成和多分辨率训练等。此外,还具备数据集和模型工具,便于自动化字幕生成和蒙版创建。OneTrainer兼具命令行和图形界面模式,支持通过详细文档和Discord社区进行交流和贡献。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号