Project Icon

gpn

基于DNA语言模型的基因组变异效应预测工具

GPN是一个基于DNA语言模型的开源项目,致力于基因组范围内的变异效应预测。项目包括单序列(GPN-SS)和多序列比对(GPN-MSA)两种模型,适用于人类和植物等多个物种的分析。GPN提供Python接口,支持自定义数据训练,并包含从数据集创建到变异效应预测的完整工作流程。这一工具为基因组研究提供了新的分析方法。

genie - 创新算法实现蛋白质从头设计 开源项目助力生物技术突破
GenieGithub开源项目氨基酸残基深度学习等变扩散蛋白质设计
Genie是一个开源的人工智能蛋白质设计项目,利用机器学习算法自动生成新型蛋白质结构。它提供完整的代码库,支持模型训练、结构采样和性能评估。研究人员可使用Genie设计长度为50至128个氨基酸的蛋白质,应用于生物技术、医药研发和材料科学等领域。项目集成了多种评估工具,为蛋白质工程提供了创新解决方案,为研究人员带来新的可能性。
caduceus - 双向等变长程DNA序列建模的创新方法
CaduceusDNA建模Github双向等变基因组基准开源项目预训练模型
Caduceus是一种双向等变长程DNA序列建模技术,可处理长达131k的DNA序列。其反向互补等变架构无需数据增强即可高效建模。项目提供预训练模型和实验复现指南,包括人类基因组预训练和多项下游任务评估,展示了在基因组学领域的应用潜力。该项目开源了模型代码和预训练权重,提供了详细的使用说明和实验复现步骤,涵盖了基因组基准测试、核苷酸转换器数据集和单核苷酸多态性变异效应预测等多个评估方法。
deepvariant - 基于深度学习的高精度变异检测工具
DeepTrioDeepVariantGithub变异检测基因组学开源项目深度学习
DeepVariant是一种基于深度学习的变异检测工具,主要用于二倍体生物的生殖系变异检测。该工具通过生成堆积图像张量,并利用卷积神经网络进行分类,最终输出VCF或gVCF文件。DeepVariant支持包括Illumina、PacBio HiFi和Oxford Nanopore在内的多种测序技术。它操作简便、经济高效,适用于Docker、本地硬件及云端环境。DeepTrio是其扩展工具,支持三人组变异检测。项目具有高准确率、灵活性,能处理多种测序方式及非人类物种的数据。
nucleotide-transformer - Transformer驱动的基因组语言及单核苷酸序列分割模型
DNA序列解析GithubNucleotide TransformersSegmentNTgenomics开源项目预训练模型
nucleotide-transformer项目提供了九种预训练基因组语言模型和两种SegmentNT分割模型。基于Transformer的基因组模型综合了3,200个人类基因组和850个不同物种的基因组数据,能够高精度预测分子表型。Agro NT模型专用于农作物基因组,在基因调控和表达预测上表现优异。这些模型可以实现对DNA序列基因组元素的单核苷酸分辨率分割。
evo - 实现跨尺度DNA序列建模与设计的开源工具
DNA建模EvoGithub基因组尺度序列设计开源项目生物基础模型
Evo是一个开源的生物基础模型,专注于DNA序列的长上下文建模和设计。基于StripedHyena架构,Evo实现了单核苷酸级别的序列建模,具有近乎线性的计算和内存扩展性。该模型拥有70亿参数,在OpenGenome数据集上训练,包含约3000亿个原核全基因组标记。Evo提供8K和131K上下文长度的预训练模型,适用于从分子到基因组尺度的序列分析和生成任务。研究人员可通过HuggingFace和Together API等多种方式使用Evo,为DNA序列研究提供了强大而灵活的工具。
alphamissense - 全蛋白质组错义突变效应预测的革命性工具
AlphaMissenseGithub基因数据库开源项目模型实现氨基酸替换蛋白质序列
AlphaMissense是一个预测蛋白质错义变异效应的开源模型。该项目提供模型实现、数据处理流程和人类氨基酸替换的预计算结果。基于AlphaFold开发,AlphaMissense利用多个遗传数据库进行序列比对,为研究人员提供蛋白质变异影响分析。其预测结果可通过Ensembl VEP工具使用,支持蛋白质功能研究和相关疾病研究。
chrombpnet - 深度学习模型分析染色质可及性和调控序列
ChromBPNetGithub开源项目染色质可及性深度学习转录因子顺式调控
ChromBPNet是一个用于分析染色质可及性数据的深度学习模型。它采用偏差因子化和全卷积神经网络,能在碱基分辨率上揭示调控序列特征、转录因子结合位点和调控变异。通过自动校正实验偏差,该模型可准确捕捉染色质轮廓的多尺度特征,为研究基因调控提供了新的计算工具。
genome-spy - 基于WebGL的基因组数据可视化工具包 支持多样本分析与交互
GenomeSpyGithubWebGL基因组可视化开源项目数据可视化生物信息学
GenomeSpy是一款基因组数据可视化工具包,采用Vega-Lite风格的语法和WebGL渲染技术。它能处理数千个患者样本,提供分面、过滤、排序和分组功能。此外,GenomeSpy具备交互式界面,支持会话管理、URL哈希和书签,方便研究人员分析复杂的基因组数据。
snakepipes - 基于Snakemake的多功能NGS数据分析工作流程
GithubNGS数据分析SnakePipesSnakemake基因组学开源项目生物信息学工作流
snakePipes提供多种NGS数据分析工作流程,包括DNA测序、ChIP-seq、RNA-seq等,支持等位基因特异性分析,并能轻松扩展到大规模数据集。这个基于Snakemake构建的框架旨在简化分析流程,提供灵活配置选项。通过Conda环境管理,snakePipes简化了安装过程,并为用户提供详细文档指导使用。该开源项目持续更新,旨在为生物信息学研究提供可靠、高效的分析工具,欢迎社区参与改进。
enformer-pytorch - 基于深度学习的基因表达预测工具
DeepmindEnformerGithubHuggingfacePytorch基因表达预测开源项目
此项目实现了Deepmind的Enformer模型在Pytorch框架下的应用,用于预测基因表达,并支持微调预训练模型以适应下游任务。用户可以通过简易安装和提供的代码示例快速使用该模型。此外,该项目还包含染色质可及性预测的微调方法,并支持从Huggingface下载预训练权重。在内存优化和详细的安装、使用说明方面进行了多项改进,帮助用户高效地进行基因组数据分析和预测。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号