Project Icon

flops-counter.pytorch

神经网络运算量与参数计算工具

该工具用于计算神经网络中的理论乘法加法运算量,以及参数数量和逐层计算成本。工具支持两个后端:pytorch和aten。aten后端覆盖更多模型架构,而pytorch后端更适合CNN分析。通过设置verbose参数,可以获取未纳入复杂度计算的操作信息,通过ignore_modules选项则可以忽略特定模块,适用于研究用途。适用于Pytorch版本2.0及以上。

benchmark - 开源基准测试集评估PyTorch性能
GithubPyTorch基准测试安装开源项目性能评估模型
PyTorch Benchmarks是评估PyTorch性能的开源基准测试集。它提供修改过的流行工作负载、标准化API和多后端支持。项目包含安装指南、多种基准测试方法和低噪声环境配置工具。支持自定义基准测试和库集成。通过夜间CI运行,持续评估PyTorch最新版本性能。
torch2trt - PyTorch模型转TensorRT加速工具
GPU加速GithubPyTorchTensorRTtorch2trt开源项目模型转换
torch2trt是一款将PyTorch模型转换为TensorRT的开源工具。它基于TensorRT Python API开发,具有简单易用和灵活可扩展的特点。用户通过单个函数调用即可完成模型转换,还支持自定义层转换器。该工具适配多种常用模型,并提供模型保存和加载功能。torch2trt能显著提升NVIDIA设备上的模型推理性能,适用于PyTorch模型推理加速场景。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
ppq - 多功能的神经网络量化工具
GithubOnnxPPQTensorRT开源项目神经网络量化量化优化
PPQ 是一个适用于工业应用的神经网络量化工具。通过将浮点运算转换为定点运算,它显著提升系统功耗效率和执行速度。具备高度扩展性,用户可自定义量化过程,并结合多种硬件和推理库使用。版本 0.6.6 更新了图模式匹配、图融合功能,并新增 FP8 量化规范和 PFL 基础类库。支持 TensorRT, Openvino, Onnxruntime 等推理框架,实现高效的神经网络量化部署。
brocolli - 基于Torch FX的PyTorch模型转换和量化工具,支持转换为Caffe和ONNX格式
GithubPyTorchbrocolli安装开源项目转换器量化器
此开源项目提供了基于Torch FX的PyTorch模型转换和量化功能,支持转换为Caffe和ONNX格式。用户可以通过简单的安装和使用步骤实现模型的转换与保存。尽管该项目已停止维护,它仍然提供了详细的使用示例和说明,适合需要进行PyTorch模型转换的用户。
ai-toolkit - AI模型训练与优化的多功能工具集
AI ToolkitFLUX.1GithubLoRA图像生成开源项目模型训练
AI-toolkit是一款功能丰富的AI模型工具集,包含FLUX.1训练、LoRA提取和模型合并等功能。它还支持批量图像生成、LoRA权重调整和滑块训练等高级特性,并提供扩展系统供用户自定义功能。这个工具集主要适用于24GB及以上显存的GPU,为AI模型开发者和研究人员提供灵活高效的解决方案。
NeuralFlow - Mistral 7B模型中间层输出可视化工具
GithubMistral 7BNeural Flow中间层输出开源项目微调模型可视化
NeuralFlow是一个Python工具,用于可视化Mistral 7B语言模型的中间层输出。它生成512x256的热图,展示模型每层的输出。该工具可用于分析模型结构和监控fine-tuning过程中的变化。NeuralFlow将4096维张量数据转化为直观的视觉表现,为AI模型开发提供新的分析方法。
oneflow - 用户友好且高效扩展的深度学习框架
CUDA支持GithubOneFlowPyTorch API分布式训练开源项目深度学习框架
OneFlow是一款深度学习框架,提供类似PyTorch的API,支持n维并行执行的全局张量以及图编译器用于加速和部署模型。最新版本1.0.0已发布,兼容Linux和多个Python版本。用户可以通过Docker或Pip轻松安装,并利用丰富的文档和模型库快速上手,适合大型变压器模型的并行训练和计算机视觉任务。
pytorch-book - PyTorch 1.8入门与高级应用指南
GithubPyTorch开源项目深度学习生成对抗网络神经网络自然语言处理
这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。
attorch - 易于修改的Python神经网络模块
GithubPyTorchTritonattorch开源项目深度学习神经网络模块
attorch是一个基于OpenAI Triton的PyTorch模块子集,提供易于修改的高效神经网络模块。支持自动混合精度、计算机视觉和自然语言处理相关层。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号