Project Icon

Restormer

高效Restormer Transformer实现高分辨率图像修复

研究提出了一种名为Restormer的高效Transformer模型,通过多头注意力和前馈网络设计,实现了长距离像素交互,适用于大图像处理。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)和高斯及真实图像去噪等任务中表现优异。Restormer的训练代码和预训练模型已发布,并被选为CVPR 2022的口头报告。用户可通过Colab或命令行测试预训练模型。

InstructIR - 基于人类指令的高质量图像修复新方法
GithubInstructIR图像修复图像去噪图像去雨图像增强开源项目
InstructIR项目利用人类书写的自然语言指令,引导神经模型进行全能型图像修复。该模型在图像去噪、去雨、去模糊、去雾和提升低光图像等多个任务上实现了最新成果,并在多个基准测试中比现有方法提升了+1dB,树立了文本引导图像修复与增强的新标准。
StableSR - 通过扩散模型实现实际应用中的图像超分辨率
GithubHugging FaceStableSR图像超分辨率开源项目扩散模型模型训练
StableSR项目采用扩散模型,提高了真实世界场景中的图像超分辨率效果。最新更新包括对SD-Turbo的支持以及与ComfyUI和Hugging Face平台的集成。用户可以通过各种平台体验和测试该项目的功能。项目提供了详细的文档、代码示例和训练脚本,已被IJCV期刊接受,并在多个公开数据集中展示了其性能和效果。
AOT-GAN-for-Inpainting - 基于聚合上下文变换的高分辨率图像修复技术
AOT-GANGithub上下文转换图像修复开源项目生成对抗网络高分辨率
AOT-GAN for Inpainting项目提出了一种创新的图像修复模型,旨在解决高分辨率图像中大面积缺失区域的修复问题。该模型结合了聚合上下文变换(AOT)块和SoftGAN技术,分别增强了上下文推理能力和纹理合成质量。AOT块能够有效捕捉远距离上下文信息和丰富的特征模式,而SoftGAN则通过改进判别器训练,提高了真实和合成图像细节的识别能力。这种方法在面部、物体和场景图像的高质量修复上取得了显著成效。
Real-ESRGAN - 开源AI图像超分辨率增强项目
AI模型GithubReal-ESRGAN图像修复开源项目超分辨率
Real-ESRGAN是一个开源的AI图像超分辨率增强项目。该项目采用纯合成数据训练,可提升各类图像和视频质量。Real-ESRGAN提供多个预训练模型,适用于通用、动漫、人脸等场景,支持4倍及以上放大。项目包含Python脚本和便携式可执行文件,方便快速使用。此外,Real-ESRGAN开放训练代码,允许在自定义数据集上进行微调。
BasicSR - 基于PyTorch的图像视频复原工具箱 实现多种先进算法
BasicSRGithubPyTorch图像复原开源项目视频复原超分辨率
BasicSR是基于PyTorch的图像和视频复原工具箱,实现了ESRGAN、BasicVSR等多种先进算法。它支持超分辨率、去噪、去模糊等任务,并提供训练测试指南、数据集准备工具和模型库。该项目为图像复原研究提供了一个功能丰富的开源平台,方便研究人员进行算法开发和性能对比。
swin2SR-realworld-sr-x4-64-bsrgan-psnr - 基于SwinV2的实景图像4倍超分辨率模型
GithubHuggingfaceSwin2SR图像处理图像超分辨率开源项目模型深度学习计算机视觉
Swin2SR是一款图像超分辨率模型,支持图像4倍放大。该模型由Conde等人开发,基于SwinV2 Transformer架构,专注于解决实际场景中的图像超分辨率问题,可有效处理压缩图像的放大和修复。模型提供完整的官方文档支持。
HAT - 激活更多像素的图像超分辨率转换器
GithubHATTransformer图像超分辨率开源项目深度学习计算机视觉
HAT是一个开源的图像超分辨率项目,采用混合注意力转换器架构。它在Set5、Urban100等数据集上达到了最先进水平,参数量为20.8M。HAT还提供了小型模型版本和用于真实世界超分辨率的GAN模型,能够处理各种图像重建任务。
SRGAN - 使用生成对抗网络提升单图像超分辨率效果
GithubSRGANTensorLayerXVGG19开源项目计算机视觉超分辨率
本项目展示了使用生成对抗网络(GAN)如何实现单图像的高分辨率超分辨率。使用预训练的VGG19模型和高分辨率图像进行训练,支持多种深度学习框架,如TensorFlow、PaddlePaddle、MindSpore,未来还将支持PyTorch。项目提供完整的训练和评估指南,并通过简单的代码修改可以切换不同的后端框架。适用于图像处理和计算机视觉领域的研究人员和开发人员,项目中展示了技术实现的详细结果,还提供了参考文献和讨论资源。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
STF - 窗口注意力机制推动图像压缩技术进步
CNN模型CompressAIGithubTransformer模型图像压缩开源项目深度学习
STF项目开发了基于窗口注意力的图像压缩方法,在CNN和Transformer架构上均实现突破。该技术在Kodak和CLIC数据集上表现出色,兼顾压缩性能和编解码效率。项目开源了预训练模型、训练评估脚本和OpenImages数据集训练指南,为图像压缩研究提供了全面资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号