Project Icon

iros20-6d-pose-tracking

6D姿态跟踪的优化方案,提高机器人操控和视觉领域的精度和效率

se(3)-TrackNet通过校准合成图像残差,实现视频序列中的6D姿态跟踪,适用领域包括机器人操控和增强现实。其神经网络架构有效减少域迁移,并采用Lie Algebra实现三维定向表示,即使仅使用合成数据训练也能在真实图像中工作。研究表明,在遮挡条件下,该方法提供稳定和精准的姿态估计,计算效率高达90.9Hz。

head-pose-estimation - 实时人脸姿态估计,使用ONNX Runtime和OpenCV进行处理
GithubONNX RuntimeOpenCV人脸检测头部姿态估计开源项目面部特征点检测
本项目提供了一个实时的人脸姿态估计解决方案,依赖于ONNX Runtime和OpenCV框架。主要步骤包括人脸检测、68个面部标志点检测以及姿态估计。支持Ubuntu 22.04,提供简单的安装步骤和预训练模型下载链接,使用户可以快速启动并运行。本项目支持视频文件和摄像头输入,提供了详尽的训练指导和代码库,确保了高度的灵活性和扩展性,适合开发和测试用途。
MonocularRGB_3D_Handpose_WACV18 - 实时单目RGB手部3D姿态估计方法
3D手部姿态估计GithubOpenpose单目RGB相机实时处理开源项目深度学习
MonocularRGB_3D_Handpose_WACV18项目开发了一种基于单个RGB摄像头的实时多手3D姿态估计方法。该方法融合深度学习与生成式技术,实现了不受限场景下的实时单目3D手部姿态估计。项目通过手部检测、2D关节估计和3D模型拟合三个步骤完成姿态估计。代码库包含Ubuntu 16.04二进制文件、Python脚本,支持多种2D关节估计器,并提供Docker配置便于测试。
AvatarPoser - 革新全身姿态跟踪 仅需头手运动数据
AMASS数据集AvatarPoserGithubTransformer全身姿势跟踪开源项目混合现实
AvatarPoser是一项突破性的全身姿态预测技术,仅需头部和手部运动数据即可在世界坐标系中准确估计全身姿态。该方法结合Transformer编码器和运动解耦技术,通过逆运动学优化生成逼真动作。AvatarPoser在大型动作捕捉数据集上表现出色,并具备实时推理能力,为元宇宙应用中的全身虚拟形象控制提供了实用解决方案。
ED-Pose - 革新端到端多人姿态估计框架
ED-PoseGithub多人姿态估计开源项目深度学习目标检测计算机视觉
ED-Pose创新性地将多人姿态估计任务重新定义为两个显式框检测过程,无需后处理和密集热图监督。该框架在COCO数据集上超越同等骨干网络的热图方法1.2 AP,并在CrowdPose数据集上达到76.6 AP的领先水平。ED-Pose还兼容Human-Art数据集,并优化了推理速度。
RSN - 高效聚合特征实现精确人体姿态估计
COCO数据集GithubRSN关键点检测姿态估计开源项目计算机视觉
RSN项目提出Residual Steps Network姿态估计方法,通过聚合同一空间尺度特征获得精细局部表示,实现精确关键点定位。项目引入Pose Refine Machine注意力机制进一步优化关键点位置。RSN在COCO和MPII基准测试中取得领先结果,并在2019年COCO关键点挑战赛中获得第一名和最佳论文奖。该方法在多人姿态估计任务中展现出优异性能。
TF-SimpleHumanPose - 2D多人体姿态估计和追踪的简易基线方法
GithubMS COCOTensorFlow姿态估计开源项目简单基线跟踪
该项目是利用TensorFlow实现的2D多人体姿态估计与追踪代码库,兼容多个数据集如MPII、PoseTrack 2018和MS COCO 2017。其代码简洁灵活,提供训练、测试和可视化功能,并生成与MS COCO和PoseTrack兼容的输出文件。在CUDA和cuDNN环境的Ubuntu系统上进行多GPU训练和测试。
RobustCap - 单目图像和稀疏IMU信号融合的实时人体动作捕捉
GithubIMU传感器RobustCap人体动作捕捉单目图像实时系统开源项目
RobustCap是一个开源项目,提出了融合单目图像和稀疏IMU信号的实时人体动作捕捉方法。该技术在遮挡、剧烈运动和弱光等复杂场景下仍能实现高精度动作重建,适用于虚拟现实、电影制作和运动分析等领域。项目提供了完整的系统实现、评估代码以及详细的安装和使用指南,便于研究人员复现和拓展。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
3D场景生成DreamScene4DGithub多目标跟踪开源项目视频处理计算机视觉
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
ESANet - 高效RGB-D语义分割网络用于室内场景分析
ESANetGithubRGB-D实时处理室内场景分析开源项目语义分割
ESANet是一个高效的RGB-D语义分割网络,专为室内场景分析设计。该网络在NVIDIA Jetson AGX Xavier上实现实时语义分割,适用于移动机器人的实时场景分析系统。项目提供训练和评估代码,支持模型转换至ONNX和TensorRT,并可测量推理时间。ESANet在NYUv2、SUNRGB-D和Cityscapes等数据集上展现出优异性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号