Project Icon

anomaly-detection-resources

异常检测领域的综合学习资源库

本项目汇集了异常检测领域的全面学习资源,包括书籍、论文、课程、数据集和工具库。涵盖多变量数据、时间序列和图网络等多种异常检测类型,并提供关键算法、高维数据和集成方法等研究方向的资料。同时列出重要会议和期刊,为异常检测研究者和实践者提供了宝贵的资源库。

TagAnomaly - 多时间序列异常检测数据标注与可视化工具
GithubShiny框架开源项目异常检测数据可视化时间序列标记工具
TagAnomaly是一款开源的多时间序列异常检测数据标注工具。它提供直观的可视化界面,支持用户在时间序列上选择和检查异常点,比较不同类别的时间序列,并利用Twitter异常检测算法提供参考。该工具还支持观察类别间分布变化,有助于创建高质量的异常检测模型训练数据集。TagAnomaly适用于需要处理多类别时间序列数据的数据科学和分析项目。
Orion - 开源无监督时间序列异常检测库
AI实验室GithubOrion开源项目无监督学习时间序列异常检测机器学习库
Orion是MIT数据到AI实验室开发的开源库,专注于无监督时间序列异常检测。该项目提供多个验证过的机器学习管道,能够识别时间序列数据中的异常模式。Orion集成了自动机器学习工具,支持AER、TadGAN等算法,并提供完善的文档、教程和基准测试。兼容Python 3.8-3.11版本,可通过pip轻松安装。适用于需要进行时间序列分析的研究人员和开发者。
Segment-Any-Anomaly - 基于混合提示正则化的零样本异常分割方法
GithubSAA+图像处理开源项目异常分割计算机视觉零样本学习
Segment-Any-Anomaly项目提出了一种基于混合提示正则化的零样本异常分割方法。该方法通过适配Grounding DINO和Segment Anything等基础模型,实现了对多种异常检测数据集的高效分割。项目在MVTec-AD、VisA等公开数据集上展现出优秀性能,并在VAND工作坊竞赛中取得佳绩。仓库包含完整代码实现、演示和使用说明,便于研究者复现和应用。
Awesome-Deepfakes-Detection - 全面深度伪造检测资源库 数据集工具及最新研究
Deepfake检测Github工具开源项目数据集竞赛论文
该项目汇集了深度伪造检测领域的综合资源,包括视频和图像数据集、开源检测工具、竞赛信息以及顶级会议论文。内容涵盖最新数据集、实用工具和前沿研究成果,为研究人员提供了深度伪造检测领域的全面参考资料,有助于快速掌握该领域的最新进展。
Anomaly-Transformer - 创新时间序列异常检测模型的新方法
Anomaly-TransformerGithub开源项目异常检测无监督学习时间序列注意力机制
Anomaly-Transformer是一种时间序列异常检测模型,利用关联差异作为可区分标准,并结合Anomaly-Attention机制和极小极大策略提高检测效果。该模型在多个基准数据集上展现出优秀性能,为无监督时间序列异常检测领域提供了新的解决方案。
awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
tods - 多变量时间序列的自动化异常检测系统
GithubTODS多变量数据开源项目异常检测时间序列自动机器学习
TODS是一个专注于多变量时间序列数据异常检测的全栈自动化机器学习系统。它提供数据处理、时间序列处理、特征分析等全面模块,支持点级、模式级和系统级三种检测场景。TODS的主要特点包括全栈机器学习功能、广泛的算法支持,以及能够自动搜索最佳模块组合构建最优管道的自动化机器学习能力。
anomalize - R语言时间序列异常检测工具
AnomalizeGithubR语言开源项目异常检测数据分析时间序列
anomalize是一个R语言包,用于时间序列异常检测。它提供时间序列分解、异常检测和重组等功能,可有效分离正常数据和异常数据。该工具支持直观的可视化,并可通过清理异常值提高预测准确性。虽然核心功能已被timetk包替代,但anomalize仍保留原有功能以支持现有代码。
Open DeepLearning - AI学习资源库,探索人工智能无限可能
AI工具AI资源Open DeepLearning人工智能教育资源深度学习
Open DeepLearning是一个综合性人工智能资源库,致力于提供AI领域的全面指南。平台汇集了丰富的免费AI资源,涵盖深度学习、机器学习等领域的书籍、课程、论文、指南、文章、教程和笔记本等多种形式。作为AI学习的重要参考平台,Open DeepLearning为研究者、学生和开发者提供系统化的学习材料,助力用户深入探索AI技术,获取所需的知识和工具。通过精心组织的内容结构和特色功能如AI Portal Gun,平台让AI学习变得更加便捷和高效,引领用户探索人工智能的无限可能。
pattern_classification - 机器学习和模式分类资源集合
Github开源项目数据预处理机器学习模型评估模式分类聚类分析
该项目汇集了机器学习和模式分类领域的全面资源。内容包括教程、示例代码、数据集、工具和技术说明等。涵盖数据预处理、特征选择、多种算法实现等方面。还提供数据可视化案例、统计模式分类研究、相关书籍和讲座资料。适合学习和应用机器学习技术的研究者和从业者参考使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号