Project Icon

Segment-and-Track-Anything

视频中任意对象的自动分割与追踪系统

Segment-and-Track-Anything是一个专注于视频中任意对象分割和追踪的开源项目。该系统集成了SAM模型的关键帧分割能力和DeAOT模型的多目标追踪功能。它支持自动检测新对象、交互式修改、文本提示等多种操作模式,适用于街景分析、增强现实、细胞追踪等领域。项目提供了直观的WebUI界面和灵活的参数设置,使用户能够轻松实现复杂的视频对象分割和追踪任务。

trackma - 多平台媒体内容追踪与管理工具
GithubTrackma多平台支持媒体追踪开源软件开源项目用户界面
Trackma是一个开源的媒体追踪管理工具,适用于Unix系统。它提供多平台账户管理、离线同步、多种媒体类型支持和多样化用户界面。该工具可自动检测媒体播放状态、更新观看进度,并支持直接启动播放器。Trackma注重安全性和可扩展性,为各类媒体内容爱好者提供便捷的观看列表管理功能。
pytorch-auto-drive - 基于 PyTorch 的分割模型和车道检测模型
GithubPyTorchPytorchAutoDrive开源项目模型部署语义分割车道检测
框架基于纯Python和PyTorch,提供从模型训练、测试到可视化和部署的全方位支持。特色包括多种主干网络、简洁易懂的代码、混合精度训练及ONNX和TensorRT的部署支持。该框架中模型训练速度快,性能优于其他实现,支持多种数据集和模型方法,为自动驾驶研究提供可靠的基准测试和高效工具。
diffseg - 基于稳定扩散的零样本图像分割方法
DiffSegGithubStable Diffusion开源项目无监督学习注意力机制零样本分割
DiffSeg是一种利用稳定扩散模型注意力信息的无监督零样本图像分割方法。这个开源项目实现了DiffSeg算法,并提供环境设置指南、运行说明和基准测试。DiffSeg在CoCo-Stuff-27和Cityscapes数据集上表现出色,为计算机视觉领域提供了新的解决方案。特别适合研究无监督学习和零样本学习的专业人士,以及需要高效、灵活图像分割方案的研究人员和开发者。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
Prompt-Can-Anything - AI应用集成平台 轻松实现多模态任务处理
AI应用GithubPrompt-Can-Anything内容创作多模态开源项目自动标注
Prompt-Can-Anything集成了多种先进AI应用,通过简单提示和操作实现图像理解、目标检测、实例分割、文本生成等AI任务。该平台提供多模态AI处理Web界面,持续丰富功能,致力构建全面智能代理系统。用户可按需安装功能模块,灵活运用AI能力。
VideoSwap - 通过语义点对应技术实现自定义主体替换的新型视频编辑框架
GithubVideoSwap开源项目扩散模型自定义概念视频主体替换语义点对应
VideoSwap是一种新型视频编辑框架,通过语义点对应技术实现自定义主体替换,同时保持背景不变。该方法支持用户交互,可对齐主体运动轨迹并修改形状。相比现有技术,VideoSwap在真实视频中展现出优越的主体替换效果,为视频编辑开辟新方向。
Depth-Anything-V2 - 单目深度估计新突破,高精度与快速推理并重
Depth Anything V2Github开源项目深度估计计算机视觉预训练模型
Depth-Anything-V2是单目深度估计领域的新进展。该模型在细节表现和鲁棒性上显著优于V1版本,并在推理速度、参数量和深度精度方面超越了基于SD的模型。项目提供四种预训练模型,适用于相对和度量深度估计,可处理图像和视频。此外,发布的DA-2K基准为深度估计研究设立了新标准。
all-seeing - 全景视觉识别与关系理解的开放世界AI系统
All-Seeing ProjectGithub关系理解多模态模型大规模数据集开源项目视觉识别
All-Seeing项目开发了全面的视觉识别和理解系统。该项目推出AS-1B大规模数据集和ASM视觉语言模型,实现开放世界的全景视觉识别。其第二版引入关系对话任务,构建AS-V2数据集和ASMv2模型,增强关系理解能力。此外,项目提出CRPE基准测试,为评估关系理解提供系统平台。
MeMOTR - 基于长期记忆的Transformer多目标跟踪方法
GithubMeMOTRTransformer多目标跟踪开源项目计算机视觉长期记忆
MeMOTR提出了一种基于Transformer的端到端多目标跟踪方法,通过长期记忆注入和定制记忆注意力层提升目标关联性能。该方法在DanceTrack和SportsMOT等数据集上展现出优秀的跟踪效果,为复杂场景的多目标跟踪提供了新思路。项目开源了代码、预训练模型和使用说明,便于研究者复现和改进。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号