awesome-pretrained-chinese-nlp-models学习资料汇总 - 高质量中文预训练模型集合

Ray

awesome-pretrained-chinese-nlp-models学习资料汇总

awesome-pretrained-chinese-nlp-models是一个收集高质量中文预训练模型的开源项目,旨在为中文自然语言处理研究提供便利。本文将对该项目进行介绍,并整理相关的学习资源,帮助读者快速上手使用。

项目简介

awesome-pretrained-chinese-nlp-models项目由GitHub用户lonePatient创建和维护,主要收集了目前公开的一些高质量中文预训练模型、中文多模态模型、中文大语言模型等内容。项目地址:

https://github.com/lonePatient/awesome-pretrained-chinese-nlp-models

项目截图

模型列表

该项目收集整理了大量中文预训练模型,主要包括以下几类:

  1. 通用基础大模型
  2. 垂直基础大模型
  3. 通用对话大模型
  4. 垂直对话大模型
  5. 多模态对话大模型
  6. NLU系列模型(BERT、RoBERTa、ALBERT等)
  7. NLG系列模型(GPT、T5、BART等)
  8. NLU-NLG系列模型(UniLM、CPM等)
  9. 多模态模型(WenLan、CogView等)

每个模型都提供了详细的参数信息、下载链接、相关论文等资料。

在线体验

项目还收集了一些可在线体验的中文大模型,如:

读者可以通过这些链接直接体验最新的中文大语言模型。

开源数据集

项目还整理了一些开源的中文NLP数据集资源:

这些数据集可以用于训练和评估中文NLP模型。

使用指南

对于想要使用这些预训练模型的读者,可以参考以下步骤:

  1. 访问项目GitHub页面,选择感兴趣的模型
  2. 根据提供的下载链接获取模型权重文件
  3. 使用Hugging Face Transformers等框架加载模型
  4. 根据具体任务进行微调或直接使用

更详细的使用说明可以参考各模型的说明文档。

总结

awesome-pretrained-chinese-nlp-models项目为中文自然语言处理研究提供了宝贵的资源。无论是初学者还是专业研究人员,都可以从中获益。希望本文的介绍能够帮助读者更好地利用这个优秀的开源项目。

avatar
0
0
0
相关项目
Project Cover

PromptKG

本页面全面展示了Prompt学习与知识图谱相关的研究成果,包括模型实现、基于预训练语言模型的知识图谱嵌入与应用、知识图谱动态编辑库以及入门教程。此外,还涵盖了零样本和少样本NLP、数据高效知识图谱构建方面的教程,并提供了有关Prompt调优、知识探测和知识图谱补全的系统性调查和研究论文列表。

Project Cover

LLMBook-zh.github.io

本书全面介绍了大语言模型技术,包括基础原理、关键技术和应用前景。通过深入研究,大模型的发展历程得到探索,其中包含OpenAI的GPT系列模型和训练细节。本书适合具有深度学习基础的高年级本科生和低年级研究生,为科研人员提供指导,推动人工智能技术的进步。

Project Cover

TextPruner

TextPruner提供低成本且无需训练的方法来优化预训练语言模型,通过减少模型尺寸加快推理速度。兼容多种NLU模型,提供用户友好的接口,支持词汇、Transformer和流水线剪枝。用户可以方便地根据需求自定义配置。详细文档和实验结果支持,帮助用户快速上手并验证性能提升。适用于Python 3.7及以上版本,依赖torch和transformers库。

Project Cover

Baichuan-7B

Baichuan-7B是由百川智能开发的开源可商用中英双语大规模预训练语言模型。基于Transformer结构,该模型在1.2万亿tokens上训练,拥有70亿参数,并提供4096长度的上下文窗口。在中文和英文的基准测试(C-Eval和MMLU)中表现出色。该模型可在Hugging Face和ModelScope平台上获取,适合开发者和研究人员使用。

Project Cover

Pretrained-Language-Model

此开源项目汇集了多个先进的预训练语言模型和相关优化技术。包含200B参数中文语言模型PanGu-α、高性能中文NLP模型NEZHA、模型压缩技术TinyBERT和DynaBERT等子项目。这些模型在多项中文NLP任务中表现出色,支持MindSpore、TensorFlow和PyTorch等多种深度学习框架。

Project Cover

t-few

t-few项目提出一种少样本参数高效微调方法,在多个NLP任务中表现优于GPT-3的上下文学习。项目开源代码包含环境配置、实验运行等功能,并在RAFT基准测试中达到领先水平。这为NLP领域少样本学习提供了高效且低成本的解决方案,研究人员可基于此进行深入研究。

Project Cover

HugNLP

HugNLP是基于Hugging Face的NLP开发应用库,为研究人员提供便利高效的开发环境。它集成了丰富的模型、处理器和应用模块,支持知识增强预训练、提示微调、指令调优等技术。该框架还包含参数高效学习、不确定性估计等工具,可用于构建多种NLP应用。HugNLP获得CIKM 2023最佳演示论文奖。

Project Cover

bert-classification-tutorial

这是一个基于BERT模型的现代化文本分类实现项目。项目采用最新的Python、PyTorch和Transformers库,为自然语言处理任务提供了高质量模板。完整流程涵盖数据准备、模型训练和评估,并具有清晰的代码结构和详细说明。虽然主要针对livedoor新闻语料库的分类任务,但也易于适应其他文本分类需求。

Project Cover

awesome-pretrained-chinese-nlp-models

awesome-pretrained-chinese-nlp-models提供多种中文自然语言处理预训练模型,涵盖基础大模型、对话型模型和多模态模型等。该平台不仅包括各模型的详细介绍、技术文档和下载链接,还定期更新,为研究人员和开发者提供全面的中文NLP资源。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号