Project Icon

SimGAN-Captcha

无监督学习突破验证码识别难题

SimGAN-Captcha项目利用生成对抗网络(GAN)技术,通过合成验证码图像和精炼网络实现无监督学习。该方法无需人工标注数据,利用验证码生成器和GAN训练的精炼器生成合成样本,显著提高了验证码识别效率。项目详细阐述了数据预处理、模型架构等技术细节,为验证码识别研究提供了新思路。

Capsolver

image

Capsolver.com is an AI-powered service that specializes in solving various types of captchas automatically. It supports captchas such as reCAPTCHA V2, reCAPTCHA V3, hCaptcha, FunCaptcha, DataDome, AWS Captcha, Geetest, and Cloudflare Captcha / Challenge 5s, Imperva / Incapsula, among others.

For developers, Capsolver offers API integration options detailed in their documentation, facilitating the integration of captcha solving into applications. They also provide browser extensions for Chrome and Firefox, making it easy to use their service directly within a browser. Different pricing packages are available to accommodate varying needs, ensuring flexibility for users.

SimGAN-Captcha

With simulated unsupervised learning, breaking captchas has never been easier. There is no need to label any captchas manually for convnet. By using a captcha synthesizer and a refiner trained with GAN, it's feasible to generate synthesized training pairs for classifying captchas.

Link to paper: SimGAN by Apple

PDF HTML

SimGAN

The task

HackMIT Puzzle #5.

Correctly label 10000 out of 15000 captcha or 90% per character.

Preprocessing

Download target captcha files

Here we download some captchas from the contest website. Each batch has 1000 captchas. We'll use 20000 so 20 batches.

import requests
import threading
URL = "https://captcha.delorean.codes/u/rickyhan/challenge"
DIR = "challenges/"
NUM_CHALLENGES = 20
lock = threading.Lock()
def download_file(url, fname):
    # NOTE the stream=True parameter
    r = requests.get(url, stream=True)
    with open(fname, 'wb') as f:
        for chunk in r.iter_content(chunk_size=1024): 
            if chunk: # filter out keep-alive new chunks
                f.write(chunk)
                #f.flush() commented by recommendation from J.F.Sebastian
    with lock:
        pass
        # print fname


ts = []
for i in range(NUM_CHALLENGES):
    fname = DIR + "challenge-{}".format(i)
    t = threading.Thread(target=download_file, args=(URL, fname))
    ts.append(t)
    t.start()
for t in ts:
    t.join()
print "Done"
Done

Decompression

Each challenge file is actually a json object containing 1000 base64 encoded jpg image file. So for each of these challenge files, we decompress each base64 strs into a jpeg and put that under a seprate folder.

import json, base64, os
IMG_DIR = "./orig"
fnames = ["{}/challenge-{}".format(DIR, i) for i in range(NUM_CHALLENGES)]
if not os.path.exists(IMG_DIR):
    os.mkdir(IMG_DIR)
def save_imgs(fname):
    with open(fname) as f:
        l = json.loads(f.read())

    for image in l['images']:
        b = base64.decodestring(image['jpg_base64'])
        name = image['name']
        with open(IMG_DIR+"/{}.jpg".format(name), 'w') as f:
            f.write(b)

for fname in fnames:
    save_imgs(fname)
assert len(os.listdir(IMG_DIR)) == 1000 * NUM_CHALLENGES
from PIL import Image
imgpath = IMG_DIR + "/"+ os.listdir(IMG_DIR)[0]
imgpath2 = IMG_DIR + "/"+ os.listdir(IMG_DIR)[3]
im = Image.open(example_image_path)
im2 = Image.open(example_image_path2)
IMG_FNAMES = [IMG_DIR + '/' + p for p in os.listdir(IMG_DIR)]
im

png

im2

png

Convert to black and white

Instead of RGB, binarized image saves significant compute. Here we hardcode a threshold and iterate over each pixel to obtain a binary image.

def gray(img_path):
    # convert to grayscale, then binarize
    img = Image.open(img_path).convert("L")
    img = img.point(lambda x: 255 if x > 200 or x == 0 else x) # value found through T&E
    img = img.point(lambda x: 0 if x < 255 else 255, "1")
    img.save(img_path)

for img_path in IMG_FNAMES:
    gray(img_path)
im = Image.open(example_image_path)
im

png

Find mask

As you may have noticed, all the captchas share the same horizontal lines. Since this is a contest, it was a function of participant's username. In the real world, these noises can be filtered out using morphological transformation with OpenCV.

We will extract and save the lines(noise) for later use. Here we average all 20000 captchas and set a threshold as above. Another method is using a bit mask (&=) to iteratively filter out surrounding black pixels i.e.

mask = np.ones((height, width))
for im in ims:
    mask &= im

The effectiveness of bit mask depends on how clean the binarized data is. With the averaging method, some error is allowed.

import numpy as np
WIDTH, HEIGHT = im.size
MASK_DIR = "avg.png"
def generateMask():
    N=1000*NUM_CHALLENGES
    arr=np.zeros((HEIGHT, WIDTH),np.float)
    for fname in IMG_FNAMES:
        imarr=np.array(Image.open(fname),dtype=np.float)
        arr=arr+imarr/N
    arr=np.array(np.round(arr),dtype=np.uint8)
    out=Image.fromarray(arr,mode="L")
    out.save(MASK_DIR)

generateMask()
im = Image.open(MASK_DIR) # ok this can be done with binary mask: &=
im

png

im = Image.open(MASK_DIR)
im = im.point(lambda x:255 if x > 230 else x)
im = im.point(lambda x:0 if x<255 else 255, "1")
im.save(MASK_DIR)
im

png

Generator for real captchas

Using a Keras built in generator function flow_from_directory to automatically import and preprocess real captchas from a folder.

from keras import models
from keras import layers
from keras import optimizers
from keras import applications
from keras.preprocessing import image
import tensorflow as tf
# Real data generator

datagen = image.ImageDataGenerator(
    preprocessing_function=applications.xception.preprocess_input
)

flow_from_directory_params = {'target_size': (HEIGHT, WIDTH),
                              'color_mode': 'grayscale',
                              'class_mode': None,
                              'batch_size': BATCH_SIZE}

real_generator = datagen.flow_from_directory(
        directory=".",
        **flow_from_directory_params
)

(Dumb) Generator

Now that we have processed all the real captchas, we need to define a generator that outputs (captcha, label) pairs where the captchas should look almost like the real ones.

We filter out the outliers that contain overlapping characters.

# Synthetic captcha generator
from PIL import ImageFont, ImageDraw
from random import choice, random
from string import ascii_lowercase, digits
alphanumeric = ascii_lowercase + digits


def fuzzy_loc(locs):
    acc = []
    for i,loc in enumerate(locs[:-1]):
        if locs[i+1] - loc < 8:
            continue
        else:
            acc.append(loc)
    return acc

def seg(img):
    arr = np.array(img, dtype=np.float)
    arr = arr.transpose()
    # arr = np.mean(arr, axis=2)
    arr = np.sum(arr, axis=1)
    locs = np.where(arr < arr.min() + 2)[0].tolist()
    locs = fuzzy_loc(locs)
    return locs

def is_well_formed(img_path):
    original_img = Image.open(img_path)
    img = original_img.convert('1')
    return len(seg(img)) == 4

noiseimg = np.array(Image.open("avg.png").convert("1"))
# noiseimg = np.bitwise_not(noiseimg)
fnt = ImageFont.truetype('./arial-extra.otf', 26)
def gen_one():
    og = Image.new("1", (100,50))
    text = ''.join([choice(alphanumeric) for _ in range(4)])
    draw = ImageDraw.Draw(og)
    for i, t in enumerate(text):
        txt=Image.new('L', (40,40))
        d = ImageDraw.Draw(txt)
        d.text( (0, 0), t,  font=fnt, fill=255)
        if random() > 0.5:
            w=txt.rotate(-20*(random()-1),  expand=1)
            og.paste( w, (i*20 + int(25*random()), int(25+30*(random()-1))),  w)
        else:
            w=txt.rotate(20*(random()-1),  expand=1)
            og.paste( w, (i*20 + int(25*random()), int(20*random())),  w)
    segments = seg(og)
    if len(segments) != 4:
        return gen_one()
    ogarr = np.array(og)
    ogarr = np.bitwise_or(noiseimg, ogarr)
    ogarr = np.expand_dims(ogarr, axis=2).astype(float)
    ogarr = np.random.random(size=(50,100,1)) * ogarr
    ogarr = (ogarr > 0.0).astype(float) # add noise
    return ogarr, text

def synth_generator():
    arrs = []
    while True:
        for _ in range(BATCH_SIZE):
            arrs.append(gen_one()[0])
        yield np.array(arrs)
        arrs = []
def get_image_batch(generator):
    """keras generators may generate an incomplete batch for the last batch"""
    img_batch = generator.next()
    if len(img_batch) != BATCH_SIZE:
        img_batch = generator.next()

    assert len(img_batch) == BATCH_SIZE

    return img_batch
import matplotlib.pyplot as plt
imarr = get_image_batch(real_generator)[0, :, :, 0]
plt.imshow(imarr)
<matplotlib.image.AxesImage at 0x7f160fda74d0>

png

imarr = get_image_batch(synth_generator())[0, :, :, 0]
print imarr.shape
plt.imshow(imarr)
(50, 100)





<matplotlib.image.AxesImage at 0x7f160fdd4390>

png

What happened next?

Plug all the data in an MNIST-like classifier and call it a day. Unfortunately, it's not that simple.

I actually spent a long time fine-tuning the network but accuracy plateued around 55% sampled. The passing requirement is 10000 out of 15000 submitted or 90% accuracy or 66% per char. I was facing a dilemma: tune the model even further or manually label x amount of data:

0.55 * (15000-x) + x = 10000
                   x = 3888

Obviously I am not going to label 4000 captchas and break my neck in the process.

Meanwhile, there happened a burnt out guy who decided to label all 10000 captchas. This dilligent dude was 2000 in. I asked if he is willing to collaborate on a solution. It's almost like he didn't want to label captchas anymore. He agreed immediately.

Using the same model, accuracy immediately shot up to 95% and we both qualified for HackMIT.

/aside

After the contest, I perfected the model and got 95% without labelling a single image. Here is the model for SimGAN:

SimGAN

Model Definition

There are three components to the network:

Refiner

The refiner network, Rθ, is a residual network (ResNet). It modifies the synthetic image on a pixel level, rather than holistically modifying the image content, preserving the global structure and annotations.

Discriminator

The discriminator network Dφ, is a simple ConvNet that contains 5 conv layers and 2 max-pooling layers. It's abinary classifier that outputs whether a captcha is synthesized or real.

Combined

Pipe the refined image into discriminator.

def refiner_network(input_image_tensor):
    """
    :param input_image_tensor: Input tensor that corresponds to a synthetic image.
    :return: Output tensor that corresponds to a refined synthetic image.
    """
    def resnet_block(input_features, nb_features=64, nb_kernel_rows=3, nb_kernel_cols=3):
        """
        A ResNet block with two `nb_kernel_rows` x `nb_kernel_cols` convolutional layers,
        each with `nb_features` feature maps.
        See Figure 6 in https://arxiv.org/pdf/1612.07828v1.pdf.
        :param input_features: Input tensor to ResNet block.
        :return: Output tensor from ResNet block.
        """
        y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(input_features)
        y = layers.Activation('relu')(y)
        y = layers.Convolution2D(nb_features, nb_kernel_rows, nb_kernel_cols, border_mode='same')(y)

        y = layers.merge([input_features, y], mode='sum')
        return layers.Activation('relu')(y)

    # an input image of size w × h is convolved with 3 × 3 filters that output 64 feature maps
    x = layers.Convolution2D(64, 3, 3, border_mode='same', activation='relu')(input_image_tensor)

    # the output is passed through 4 ResNet blocks
    for _ in range(4):
        x = resnet_block(x)

    # the output of the last ResNet block is passed to a 1 × 1 convolutional layer producing 1 feature map
    # corresponding to the refined synthetic image
    return layers.Convolution2D(1, 1, 1, border_mode='same', activation='tanh')(x)

def discriminator_network(input_image_tensor):
    """
    :param input_image_tensor: Input tensor corresponding to an image, either real or refined.
    :return: Output tensor that corresponds to the probability of whether an image is real or refined.
    """
    x = layers.Convolution2D(96, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(input_image_tensor)
    x = layers.Convolution2D(64, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(x)
    x = layers.MaxPooling2D(pool_size=(3, 3), border_mode='same', strides=(1, 1))(x)
    x = layers.Convolution2D(32, 3, 3, border_mode='same', subsample=(1, 1), activation='relu')(x)
    x =
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号