Project Icon

xlm-roberta_punctuation_fullstop_truecase

XLM-RoBERTa模型实现47种语言的标点恢复和句子分割

该模型基于XLM-RoBERTa架构,能够在47种语言中自动恢复标点符号、调整大小写和检测句子边界。通过创新的神经网络设计,无需语言特定路径即可处理多种语言文本。模型支持批量处理,可通过punctuators包或直接使用ONNX和SentencePiece模型进行部署,为多语言文本处理提供了灵活高效的解决方案。

lilt-xlm-roberta-base - 融合LiLT和XLM-RoBERTa的多语言文档布局分析模型
GithubHuggingfaceLiLTXLM-RoBERTa多语言模型布局转换器开源项目文档理解模型
lilt-xlm-roberta-base 是一个结合Language-Independent Layout Transformer (LiLT)和XLM-RoBERTa的多语言文档布局理解模型。该模型支持100种语言的文档分析,能同时处理文本内容和布局信息。这一特性使其在多语言文档分类、信息提取和版面分析等任务中具有广泛应用潜力。
cross-en-de-roberta-sentence-transformer - RoBERTa跨语言句向量模型实现德英文本语义匹配
GithubHuggingfaceRoBERTaSentence Transformers句子嵌入开源项目模型语义相似度跨语言模型
cross-en-de-roberta-sentence-transformer是一个基于RoBERTa的跨语言句向量模型,专门针对德语和英语文本进行优化。该模型通过多语言微调和语言交叉训练,在语义相似度计算、语义搜索和释义挖掘等任务中表现优异。它不仅在德语和英语单语环境下表现出色,在跨语言场景中也展现了卓越性能,为双语自然语言处理应用提供了有力支持。
wav2vec2-large-robust-ft-libritts-voxpopuli - 精确转录语音的Wav2Vec2模型 支持标点符号输出
GithubHuggingfacewav2vec2开源项目数据集文本转语音标点符号模型语音识别
Wav2Vec2-large-robust-ft-libritts-voxpopuli是一款经过优化的语音转录模型,专门生成带标点符号的高质量文本。该模型基于LibriTTS和VoxPopuli数据集训练,在Librispeech验证集上达到4.45%的词错误率。它尤其适用于TTS模型转录,准确的标点有助于提升语音韵律。虽主要针对清晰音频优化,但对噪声音频如CommonVoice也有良好表现。
sentiment-roberta-large-english-3-classes - 基于RoBERTa的英文情感分析模型,精确分类社交媒体情感
GithubHuggingfaceRoBERTa准确率开源项目情感分析模型社交媒体
该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。
roberta-large-mnli - RoBERTa大型模型微调的零样本分类模型
GithubHuggingfaceRoBERTa开源项目文本分类机器学习模型自然语言处理语言模型
roberta-large-mnli是基于RoBERTa大型模型在MNLI语料库上微调的自然语言推理模型。该模型在零样本分类任务中表现优异,适用于句对分类和序列分类。它采用transformer架构,通过掩码语言建模进行预训练,在GLUE和XNLI基准测试中成绩卓越。然而,用户需注意模型可能存在偏见,不适合生成事实性内容或用于可能造成负面影响的场景。
xlm-roberta-large-finetuned-conll03-german - 基于XLM-RoBERTa的大型多语言模型优化德国文本的命名实体识别
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型模型训练自然语言处理
该项目展示了一种基于大规模多语言数据训练的XLM-RoBERTa模型,专注于德语文本的命名实体识别和词性标注,能够高效解析德语文本,并通过内置管道进行自然语言理解任务的方便集成。
chinese_roberta_L-2_H-128 - 使用多模态预训练优化中文自然语言处理
CLUECorpusSmallGithubHuggingfaceRoBERTa开源项目模型语言模型预训练
该项目包括24种中文RoBERTa模型,使用CLUECorpusSmall数据集进行训练,效果超过较大数据集。模型通过UER-py和TencentPretrain预训练,并支持多模态框架,参数超过十亿。模型可在HuggingFace和UER-py Modelzoo中获取。项目提供详细的训练过程和关键细节,便于结果复现,着重提升中文自然语言处理任务中的性能。
tner-xlm-roberta-base-ontonotes5 - XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注
GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目标记分类模型深度学习自然语言处理
该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。
twitter-roberta-large-2022-154m - 训练于154M推文的RoBERTa-large模型(2022年数据)及其应用
GithubHuggingfaceRoBERTa-large开源项目推特掩码语言模型模型特征提取自然语言处理
本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。
distilroberta-base - DistilRoBERTa:轻量高效的英语语言模型
DistilRoBERTaGithubHuggingface开源项目机器学习模型模型蒸馏自然语言处理语言模型
DistilRoBERTa-base是RoBERTa-base的精简版本,采用与DistilBERT相同的蒸馏技术。模型包含6层结构,768维向量和12个注意力头,总参数量为8200万,比原版减少33%。在保持相近性能的同时,处理速度提升一倍。主要应用于序列分类、标记分类和问答等下游任务的微调。该模型在英语处理上表现优异,但使用时需注意其可能存在的偏见和局限性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号