Project Icon

image-restoration-sde

创新图像恢复方法 结合SDE和扩散模型的IR-SDE与Refusion

该项目提出IR-SDE和Refusion两种图像恢复方法。IR-SDE采用均值回复随机微分方程,在多项任务中达到最优性能。Refusion整合潜空间扩散模型,可处理大尺寸真实图像。这些技术适用于合成和实际数据集,有效解决图像去雨、去雾、去阴影等问题。项目开源完整PyTorch实现代码,并提供预训练模型和使用指南。

RayDiffusion - 射线扩散模型在相机姿态估计中的应用
GithubRayDiffusion开源项目扩散模型深度学习相机姿态估计计算机视觉
RayDiffusion项目提出了一种将相机表示为射线并应用扩散模型的姿态估计方法。该方法支持已知边界框和从掩码自动提取边界框两种模式,同时提供射线回归选项。项目包含代码实现、预训练模型和使用说明,适用于计算机视觉领域的研究和开发。
StreamMultiDiffusion - 基于区域语义控制的实时交互式图像生成
GithubStable Diffusion 3StreamMultiDiffusion实时生成开源项目文本到图像语义控制
StreamMultiDiffusion 提供基于区域语义控制的实时交互式图像生成。该项目支持细粒度区域控制、分离提示和实时图像修复,能够显著降低生成延迟,适用于大尺寸图像的高效创作及全景生成等应用。
Watermark-Removal-Pytorch - 基于深度图像先验的无训练水印去除方法
GithubPytorch图像修复开源项目水印移除深度图像先验深度学习
该项目实现了基于深度图像先验的水印去除技术,无需训练数据即可处理已知和未知水印。该方法通过简单API调用,支持图像编辑等任务。项目采用PyTorch开发,提供MPS加速,包含使用说明和结果展示。
DiffusionMat - 创新图像抠图的序列细化学习方法
DiffusionMatGithubalpha遮罩三元图图像抠图开源项目扩散模型
DiffusionMat是一种新型图像抠图框架,利用扩散模型实现从粗略到精细alpha遮罩的过渡。它将图像抠图视为序列细化学习过程,通过对trimaps添加噪声并迭代去噪来引导预测。框架的主要创新包括校正模块和Alpha可靠性传播技术,旨在提高抠图精度和一致性。DiffusionMat还采用了专门的损失函数来优化alpha遮罩的边缘精度和区域一致性。在多个图像抠图基准测试中,该方法展现出优于现有技术的性能。
ddpm-ema-church-256 - DDPM模型在图像合成中的应用与性能分析
Denoising Diffusion Probabilistic ModelsGithubHuggingface噪声调度器图像合成开源项目无条件生成模型深度学习
ddpm-ema-church-256项目采用DDPM模型进行图像合成,结合扩散概率模型与Langevin动态,取得CIFAR10数据集Inception分数9.46和FID分数3.17。支持DDPM、DDIM、PNDM调度器推理,实现质量与速度平衡,并提供预训练管道以生成高质量图像。项目为图像生成与压缩提供了创新思路。
NAFNet - 无需非线性激活函数的图像修复网络
GithubNAFNet图像修复图像去噪图像去模糊开源项目超分辨率
NAFNet是一种无需非线性激活函数的图像修复网络,通过简单的基线超过现有SOTA方法并显著降低计算成本。在GoPro数据集上,该网络的图像去模糊性能达到33.69 dB PSNR,在SIDD数据集上的图像去噪性能为40.30 dB PSNR,均显著超越前代SOTA性能。NAFNet适用于图像去噪、去模糊和立体图像超分辨率等任务。
HiDiffusion - 无需训练即可提升扩散模型分辨率和速度的方法
AI绘图GithubHiDiffusion图像生成开源项目扩散模型高分辨率
HiDiffusion是一种提高预训练扩散模型分辨率和速度的方法,无需额外训练。通过添加单行代码即可集成到现有扩散管道中。它支持文本到图像、图像到图像和修复等多种任务,适用于Stable Diffusion XL、Stable Diffusion v2等主流模型。HiDiffusion还兼容ControlNet等下游任务,为图像生成提供更高质量和效率。
KAIR - 多功能视频与图像增强开源工具箱,涵盖最新深度学习模型
BSRGANGithubSCUNetSwinIRUSRNetVRT开源项目
KAIR项目提供了视频超分辨率、去模糊、去噪等图像处理技术的训练和测试代码,支持如DnCNN、FFDNet、SRMD、MSRResNet、ESRGAN、SwinIR等最新模型。这些代码简洁易懂,并附有详细指南,即使是复杂的图像恢复任务也能取得高性能效果。项目定期更新,确保用户体验最新技术进展。
Diffusion_models_from_scratch - 完整实现扩散模型的开源框架与教程
Diffusion模型GithubImageNetU-Net图像生成开源项目预训练模型
该项目提供了一个完整的扩散模型实现框架,包含DDPM、DDIM和无分类器引导模型。项目特点包括:基于ImageNet 64x64数据集的预训练模型、详细的环境配置和数据准备指南、全面的训练和推理脚本,以及多种模型架构和优化策略。开发者可以利用此框架轻松训练自定义扩散模型或使用预训练模型生成图像。
ddpm-ema-celebahq-256 - 无条件图像生成的高效去噪扩散模型
CIFAR10DDPMGithubHuggingfaceProgressiveGAN噪声调度器图像合成开源项目模型
项目通过去噪扩散概率模型实现高质量无条件图像生成,结合无平衡态热力学概念,在CIFAR10和256x256 LSUN数据集上取得了优异的Inception和FID评分。用户可以灵活选择噪声调度器以平衡生成质量与速度,该模型也支持渐进式无损压缩,作为自动回归解码的推广。详情请参照官方推理与训练示例。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号