Project Icon

EEG-ATCNet

创新深度学习模型提升运动想象分类

EEG-ATCNet是一种创新的深度学习模型,专门用于脑机接口中EEG信号的运动想象分类。该模型融合卷积神经网络、自注意力机制和时间卷积网络,有效提取EEG信号时空特征。在BCI竞赛IV-2a数据集上,EEG-ATCNet准确率达81.10%,优于其他常用模型。项目还实现了多种注意力机制和数据处理方法,为EEG信号分析研究提供了实用工具。

EEG-Conformer - 结合卷积和自注意力的EEG解码与可视化工具
EEG ConformerEEG解码Github卷积神经网络大脑波形投影开源项目自注意力机制
EEG Conformer是一种结合卷积和自注意力机制的EEG分类与可视化工具。其卷积模块提取时间和空间上的局部特征,自注意力模块捕捉全局关联,最终通过全连接层进行分类预测。此外,EEG Conformer还具备将类激活映射到脑拓扑图的可视化功能。支持Python 3.10和Pytorch 1.12,在多个BCI竞赛数据集上表现出色。
deepsleepnet - 自动睡眠阶段评分深度学习模型
DeepSleepNetEEGGithub开源项目深度学习睡眠阶段评分神经系统工程
DeepSleepNet是一个创新的深度学习模型,用于基于原始单通道脑电图(EEG)数据的自动睡眠阶段评分。其独特的双阶段架构融合了表示学习和序列残差学习技术,大幅提升了评分准确性。通过在MASS和Sleep-EDF等公开数据集上的严格评估,DeepSleepNet展现出优于传统手工特征工程方法的卓越性能。这一高效、精确的自动化工具为睡眠障碍诊断、睡眠质量监测等睡眠研究和临床应用领域带来了新的可能。
EEG-To-Text - 脑电波解码实现文本生成及情感分析
EEG解码GithubZuCo数据集开源项目神经语言处理脑电图转文本零样本情感分类
EEG-To-Text项目探索脑电波解码技术,实现开放词汇文本生成和零样本情感分类。该项目基于ZuCo数据集,利用神经网络模型将脑电波信号转换为文本并进行情感分析。这项技术可能为人机交互、辅助沟通和认知科学研究提供新的研究方向。
ECG-Heartbeat-Classification-seq2seq-model - 序列到序列深度学习模型实现心电图心跳分类与心律失常检测
ECG心跳分类GithubMIT-BIH数据库序列到序列模型开源项目心律失常检测深度学习
项目利用序列到序列深度学习方法进行心电图心跳分类和心律失常检测,涵盖患者间和患者内两种情况。采用MIT-BIH心律失常数据库评估,提供预处理数据集和训练脚本。模型在分类任务中表现出色,为心脏病学研究提供新方法。代码开源,仅供学术和非商业使用。
AbSViT - 创新视觉注意力模型实现自适应分析合成
AbSViTGithub图像分类开源项目视觉注意力计算机视觉语义分割
AbSViT是一个创新视觉注意力模型,采用分析合成方法实现自适应的自上而下注意力机制。该模型在ImageNet分类和语义分割任务中表现优异,尤其在鲁棒性测试中展现出色性能。AbSViT能够适应单目标和多目标场景,并根据不同问题动态调整注意力。这一模型为计算机视觉领域开辟了新的研究方向,有望在多种视觉任务中发挥重要作用。
BrainFlowsIntoVRChat - 脑电图数据实时集成VRChat的开源项目
BrainFlowGithubOSCVRChat开源项目神经反馈脑机接口
BrainFlowsIntoVRChat是一个开源项目,实现了脑电图(EEG)数据与VRChat的实时集成。项目基于BrainFlow库,支持多种生物传感器,可测量和传输放松度、专注度等脑波指标及心率、呼吸等生理数据。这些数据可用于虚拟形象的动画和表情控制,创造独特的互动体验。项目兼容多种硬件设备,并集成了基于机器学习的脑波意图识别功能。对于研究脑机接口与虚拟现实结合的开发者而言,这是一个实用的开源工具。
EEGwithRaspberryPI - Raspberry Pi EEG shield开源项目助力神经科学研究
GithubPiEEG开源项目树莓派生物信号脑机接口
EEGwithRaspberryPI项目开发了一款适用于Raspberry Pi的EEG shield,为神经科学研究提供了便捷工具。项目包含硬件连接指南、数据读取脚本和实时可视化界面,支持250Hz采样率的数据采集。该开源设备仅供研究使用,不适用于医疗目的。项目还展示了基于眨眼的机器人控制,体现了其在脑机接口领域的应用潜力。
FocalNet - 突破注意力机制的新型视觉模型架构
FocalNetsGithub卷积神经网络图像分类开源项目目标检测语义分割
FocalNet是一种创新的视觉模型架构,无需使用注意力机制。其核心的焦点调制技术在多项视觉任务中超越了现有的自注意力方法。该模型在ImageNet分类和COCO检测等基准测试中表现优异,同时保持了高效简洁的实现。FocalNet具有平移不变性、强输入依赖性等特点,为计算机视觉领域提供了一种全新的建模思路。
sebotnet33ts_256.a1h_in1k - 结合ResNet与自注意力的高性能图像分类模型
BotNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型深度学习
sebotnet33ts_256.a1h_in1k是一个融合ResNet架构和BotNet设计的图像分类模型,整合了Squeeze-and-Excitation通道注意力机制。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用LAMB优化器、强化的dropout和随机深度技术,以及余弦学习率调度。模型提供灵活的配置选项,包括块/阶段布局和注意力层等,适用于图像分类和特征提取任务。其平衡了性能和训练效率,为计算机视觉领域提供了实用的解决方案。
attention-gym - FlexAttention API的注意力机制实验工具集
Attention GymFlexAttentionGithubPyTorch开源项目机器学习注意力机制
Attention Gym是一个基于FlexAttention API的开源工具集,用于实验和优化各种注意力机制。项目提供了多种注意力变体的实现、性能对比工具和实用函数,包括示例脚本和可视化组件。研究人员和开发者可以利用这些资源来探索、理解和应用先进的注意力技术,从而在自己的模型中实现更高效的注意力机制。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号