Project Icon

ranx

Python高性能排序评估库 适用于信息检索和推荐系统

ranx是一个高性能Python排序评估库,专为信息检索和推荐系统设计。它利用Numba实现快速向量运算和自动并行,提供用户友好的接口进行系统评估和比较。ranx支持统计检验、LaTeX表格导出,以及多种融合算法和归一化策略。此外,ranx还提供自动融合优化功能,并配有预计算运行库ranxhub,方便进行模型比较。

PyPI version Download counter Documentation Status License: MIT Open in Colab

⚡️ Introduction

ranx ([raŋks]) is a library of fast ranking evaluation metrics implemented in Python, leveraging Numba for high-speed vector operations and automatic parallelization. It offers a user-friendly interface to evaluate and compare Information Retrieval and Recommender Systems. ranx allows you to perform statistical tests and export LaTeX tables for your scientific publications. Moreover, ranx provides several fusion algorithms and normalization strategies, and an automatic fusion optimization functionality. ranx also have a companion repository of pre-computed runs to facilitated model comparisons called ranxhub. On ranxhub, you can download and share pre-computed runs for Information Retrieval datasets, such as MSMARCO Passage Ranking. ranx was featured in ECIR 2022, CIKM 2022, and SIGIR 2023.

If you use ranx to evaluate results or conducting experiments involving fusion for your scientific publication, please consider citing it: evaluation bibtex, fusion bibtex, ranxhub bibtex.

NB: ranx is not suited for evaluating classifiers. Please, refer to the FAQ for further details.

For a quick overview, follow the Usage section.

For a in-depth overview, follow the Examples section.

✨ Features

Metrics

The metrics have been tested against TREC Eval for correctness.

Statistical Tests

Please, refer to Smucker et al., Carterette, and Fuhr for additional information on statistical tests for Information Retrieval.

Off-the-shelf Qrels

You can load qrels from ir-datasets as simply as:

qrels = Qrels.from_ir_datasets("msmarco-document/dev")

A full list of the available qrels is provided here.

Off-the-shelf Runs

You can load runs from ranxhub as simply as:

run = Run.from_ranxhub("run-id")

A full list of the available runs is provided here.

Fusion Algorithms

Please, refer to the documentation for further details.

Normalization Strategies

Please, refer to the documentation for further details.

🔌 Requirements

python>=3.8

As of v.0.3.5, ranx requires python>=3.8.

💾 Installation

pip install ranx

💡 Usage

Create Qrels and Run

from ranx import Qrels, Run

qrels_dict = { "q_1": { "d_12": 5, "d_25": 3 },
               "q_2": { "d_11": 6, "d_22": 1 } }

run_dict = { "q_1": { "d_12": 0.9, "d_23": 0.8, "d_25": 0.7,
                      "d_36": 0.6, "d_32": 0.5, "d_35": 0.4  },
             "q_2": { "d_12": 0.9, "d_11": 0.8, "d_25": 0.7,
                      "d_36": 0.6, "d_22": 0.5, "d_35": 0.4  } }

qrels = Qrels(qrels_dict)
run = Run(run_dict)

Evaluate

from ranx import evaluate

# Compute score for a single metric
evaluate(qrels, run, "ndcg@5")
>>> 0.7861

# Compute scores for multiple metrics at once
evaluate(qrels, run, ["map@5", "mrr"])
>>> {"map@5": 0.6416, "mrr": 0.75}

Compare

from ranx import compare

# Compare different runs and perform Two-sided Paired Student's t-Test
report = compare(
    qrels=qrels,
    runs=[run_1, run_2, run_3, run_4, run_5],
    metrics=["map@100", "mrr@100", "ndcg@10"],
    max_p=0.01  # P-value threshold
)

Output:

print(report)
#    Model    MAP@100    MRR@100    NDCG@10
---  -------  --------   --------   ---------
a    model_1  0.320ᵇ     0.320ᵇ     0.368ᵇᶜ
b    model_2  0.233      0.234      0.239
c    model_3  0.308ᵇ     0.309ᵇ     0.330ᵇ
d    model_4  0.366ᵃᵇᶜ   0.367ᵃᵇᶜ   0.408ᵃᵇᶜ
e    model_5  0.405ᵃᵇᶜᵈ  0.406ᵃᵇᶜᵈ  0.451ᵃᵇᶜᵈ

Fusion

from ranx import fuse, optimize_fusion

best_params = optimize_fusion(
    qrels=train_qrels,
    runs=[train_run_1, train_run_2, train_run_3],
    norm="min-max",     # The norm. to apply before fusion
    method="wsum",      # The fusion algorithm to use (Weighted Sum)
    metric="ndcg@100",  # The metric to maximize
)

combined_test_run = fuse(
    runs=[test_run_1, test_run_2, test_run_3],  
    norm="min-max",       
    method="wsum",        
    params=best_params,
)

📖 Examples

NameLink
OverviewOpen In Colab
Qrels and RunOpen In Colab
EvaluationOpen In Colab
Comparison and ReportOpen In Colab
FusionOpen In Colab
PlotOpen In Colab
Share your runs with ranxhubOpen In Colab

📚 Documentation

Browse the documentation for more details and examples.

🎓 Citation

If you use ranx to evaluate results for your scientific publication, please consider citing our ECIR 2022 paper:

BibTeX
@inproceedings{ranx,
  author       = {Elias Bassani},
  title        = {ranx:
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号