Project Icon

deformable-detr-DocLayNet

Deformable DETR模型实现文档布局分析 基于DocLayNet数据集

这是一个基于Deformable DETR架构的文档布局分析模型,在DocLayNet数据集上训练。该模型可检测和分类11种文档布局元素,在DocLayNet测试集上实现57.1 mAP。它采用transformer编码器-解码器结构,结合CNN主干网络,使用双向匹配损失训练。此模型可用于文档布局分析任务,也可集成到Aryn分区服务等应用中。

layoutlmv2-large-uncased - 提升多模态文档处理能力的先进预训练模型
GithubHuggingfaceLayoutLMv2图像理解多模态开源项目文档AI模型预训练
LayoutLMv2通过整合文本、布局和图像的新预训练任务,增强文档理解能力,广泛应用于FUNSD、CORD等视觉丰富文档项目,提高性能,适合多种下游任务。
layoutlm-large-uncased - 微软开发的多模态文档理解大型预训练模型
GithubHuggingfaceLayoutLM信息提取多模态学习开源项目文档理解模型预训练模型
LayoutLM-large-uncased是微软开发的大型多模态文档理解预训练模型。该模型融合文本、版面布局和图像信息,在表单和收据理解等文档AI任务中表现出色。模型架构包括24层、1024隐藏单元、16个注意力头,总计3.43亿参数。经过1100万份文档的2轮预训练,LayoutLM为文档图像理解和信息提取任务提供了高效解决方案。
layoutlmv3-base - 多模态文档AI预训练模型
Document AIGithubHuggingfaceLayoutLMv3多模态预训练开源项目文本图像掩码文档人工智能模型
LayoutLMv3是一款文档AI预训练模型,采用统一的文本和图像掩码方法。该模型架构简单,训练目标明确,适用于多种文档AI任务。通过微调,LayoutLMv3可用于表单理解、收据识别、文档问答等文本相关任务,以及文档图像分类、文档布局分析等图像相关任务。作为通用预训练模型,LayoutLMv3在文档AI领域的多项任务中表现出色。
detr-resnet-101 - DETR目标检测模型:结合ResNet-101与Transformer架构
COCODETRGithubHuggingfaceTransformer开源项目模型物体检测计算机视觉
DETR是一种创新的端到端目标检测模型,结合了Transformer架构和ResNet-101骨干网络。该模型在COCO 2017数据集上训练,能高效检测图像中的多个物体。通过独特的对象查询机制和双向匹配损失函数,DETR在目标检测任务中表现优异,达到43.5%的平均精度。这一方法为计算机视觉领域开辟了新的研究方向。
layoutxlm-base - 跨语言文档智能分析的多模态预训练技术
GithubHuggingfaceLayoutXLM多模态预训练开源项目文档AI模型视觉文档理解跨语言理解
LayoutXLM作为LayoutLMv2的语言扩展版本,整合文本、布局和图像信息,实现文档智能处理。这个预训练模型专注于解决视觉文档理解中的语言障碍,经XFUND数据集测试,在跨语言文档处理任务中展现出优异性能。
table-transformer-detection - Table Transformer:先进的文档表格检测模型
GithubHuggingfaceTable Transformer图像处理开源项目文档分析模型深度学习表格检测
Table Transformer是一个专门用于文档表格检测的开源模型。它基于DETR架构,在PubTables1M数据集上训练,能够有效地从非结构化文档中识别和定位表格。该模型采用Transformer结构,支持多种文档格式的处理。Table Transformer提供了简洁的API,方便开发者集成表格检测功能。凭借其在准确性和性能方面的优异表现,Table Transformer成为文档分析和信息提取领域的重要工具。
layout-parser - 文档图像分析的深度学习工具包
GithubLayout ParserOCR开源项目文档图像分析模型检测深度学习
LayoutParser提供多种深度学习模型和统一API,简化文档图像分析任务。支持布局检测、OCR、数据可视化等功能,并允许共享模型和分析流程。安装简便,可根据需求选择依赖项,是文档图像处理的理想工具。
detr-resnet-50 - DETR 基于Transformer的创新目标检测模型
COCO数据集DETRGithubHuggingfaceResNet-50Transformer开源项目模型目标检测
DETR-ResNet-50是一种创新的目标检测模型,融合Transformer架构与ResNet-50骨干网络。该模型采用端到端训练方法,简化了传统目标检测流程。经COCO 2017数据集训练后,DETR能高效检测和定位图像中的多个物体,在目标检测任务中实现42.0的平均精度(AP)。其简洁设计和卓越性能为计算机视觉领域带来新的可能。
detr-resnet-50-panoptic - DETR模型:结合ResNet-50的端到端目标检测与全景分割
DETRGithubHuggingfaceTransformer开源项目模型目标检测计算机视觉语义分割
DETR-ResNet-50是一种创新的目标检测模型,融合了Transformer和卷积神经网络技术。该模型在COCO数据集上训练,支持端到端的目标检测和全景分割。通过100个对象查询机制,DETR实现了高效准确的目标识别。在COCO 2017验证集上,模型展现出优秀性能:框AP为38.8,分割AP为31.1,全景质量(PQ)达43.4。这一模型为计算机视觉任务提供了新的解决方案。
dit-base - 面向文档智能处理的自监督预训练图像Transformer模型
DiTGithubHuggingface图像编码开源项目文档分析文档图像转换器模型自监督预训练
DiT-base是一款基于Transformer架构的文档图像处理模型,通过在4200万份文档图像上进行自监督预训练而成。该模型运用掩码补全任务来学习图像的内部表示,可应用于文档分类、表格检测和版面分析等多种任务。DiT-base能够将文档图像编码为向量,为文档智能处理领域的各类应用奠定了基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号