Project Icon

deformable-detr-DocLayNet

Deformable DETR模型实现文档布局分析 基于DocLayNet数据集

这是一个基于Deformable DETR架构的文档布局分析模型,在DocLayNet数据集上训练。该模型可检测和分类11种文档布局元素,在DocLayNet测试集上实现57.1 mAP。它采用transformer编码器-解码器结构,结合CNN主干网络,使用双向匹配损失训练。此模型可用于文档布局分析任务,也可集成到Aryn分区服务等应用中。

deberta-v2-xlarge-mnli - DeBERTa架构的大规模预训练语言模型用于自然语言推理
DeBERTaGithubHuggingface人工智能开源项目微软机器学习模型自然语言处理
deberta-v2-xlarge-mnli是基于DeBERTa V2架构的大型预训练语言模型,经过MNLI任务微调。模型包含24层,1536隐藏单元,共9亿参数。它采用解耦注意力和增强掩码解码器,在GLUE等自然语言理解基准测试中表现优异,为相关研究与应用提供了新的可能。
Depth-Anything-V2-Large - 单目深度估计新突破:高精度细节与高效性能的完美平衡
Depth Anything V2GithubHuggingface图像处理开源项目模型深度估计神经网络计算机视觉
Depth-Anything-V2-Large是一款基于大规模数据训练的单目深度估计模型。该模型通过595K合成标记图像和62M+真实未标记图像的训练,在细节精度和鲁棒性方面超越了前代版本。与基于SD的模型相比,它不仅更加高效和轻量,处理速度提升了10倍,还在预训练基础上展现出优秀的微调能力。这一模型为计算机视觉领域提供了性能卓越的深度估计解决方案。
deep-text-recognition-benchmark - 基于深度学习方法的文本识别
GithubPyTorch场景文本识别开源项目数据集模型分析深度学习
该项目是一个开源的场景文本识别框架,通过四阶段的官方PyTorch实现,支持现有大多数STR模型。它允许在统一的数据集上,评估各个模块的性能表现,包括准确性、速度和内存需求,并已被多个国际竞赛验证。用户可使用预训练模型进行测试,或进行更深入研究。
deberta-base-mnli - DeBERTa模型在MNLI任务上的微调版本
DeBERTaGithubHuggingface开源项目微软机器学习模型神经网络自然语言处理
deberta-base-mnli是一个在MNLI任务上微调的DeBERTa基础模型。DeBERTa通过解耦注意力和增强掩码解码器改进了BERT和RoBERTa。该模型在SQuAD和MNLI等基准测试中表现优异,在大多数自然语言理解任务中超越了BERT和RoBERTa的性能。它为自然语言处理研究和应用提供了有力支持。
AI-generated_images_detector - 高精度AI生成图像检测模型,适用于图像分类任务
AI-generated_images_detectorGithubHuggingface准确率图像分类开源项目模型训练和评估数据
该高精度AI生成图像检测模型专注于图像分类,适用于imagefolder数据集验证。模型训练后达到了0.9736的准确率,能够有效区分生成与真实图像。通过transformers库中的pipeline进行推理,只需将图像传递给模型即可获得分类结果,适用于对图像分类精度要求较高的应用,能够有效提升AI生成内容的识别能力。
subnet9_Aug17 - transformers模型的特点与优化指导
GithubHuggingfaceTransformers偏见开源项目模型模型卡碳排放训练数据
文档介绍了transformers库中的模型,涵盖开发细节、使用场景及局限性。根据模型卡的建议,用户可以了解模型的偏见、风险和局限,及如何开始使用。简要说明了性能评估、环境影响和技术规格,并提供起步代码和细节。详细信息建议查看相关存储库和文献。
table-transformer - 基于深度学习的表格提取与结构识别模型
GithubPubTables-1MTable Transformer开源项目深度学习目标检测表格提取
Table Transformer (TATR)是一种基于对象检测的深度学习模型,用于从PDF和图像中提取表格。该模型支持表格检测、结构识别和功能分析,并提供完整的训练和推理代码。TATR还发布了在PubTables-1M等大规模数据集上的预训练模型权重,有助于实现高精度的表格提取和分析。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
DeepLabCut - 无标记动物姿态估计工具箱
DeepLabCutGithub动物姿态估计开源工具箱开源项目神经科学应用行为追踪
DeepLabCut是一个无标记动物姿态估计工具箱。此工具适用于各类动物行为的分析,并通过TensorFlow和PyTorch加强模型训练功能。它整合了多种新技术,如MobileNetV2s与EfficientNets,有效提升了效率与准确性。项目提供多语种文档与在线课程,方便用户快速掌握实时多动物追踪及三维姿态估计技术。DeepLabCut已应用于多种场合并获得验证,通过社区持续的优化适用于从神经科学到生态研究的广泛领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号