Project Icon

deformable-detr-DocLayNet

Deformable DETR模型实现文档布局分析 基于DocLayNet数据集

这是一个基于Deformable DETR架构的文档布局分析模型,在DocLayNet数据集上训练。该模型可检测和分类11种文档布局元素,在DocLayNet测试集上实现57.1 mAP。它采用transformer编码器-解码器结构,结合CNN主干网络,使用双向匹配损失训练。此模型可用于文档布局分析任务,也可集成到Aryn分区服务等应用中。

DAFormer - 提升域适应语义分割的网络架构与训练策略
DAFormerGithubTransformer域自适应语义分割开源项目网络架构语义分割
通过Transformer编码器和多级上下文感知特征融合解码器,显著提升域适应语义分割性能。DAFormer使用稀有类采样、ImageNet特征距离和学习率预热等策略,提升GTA→Cityscapes和Synthia→Cityscapes的分割效果,并扩展至域泛化领域。在多个UDA基准上,DAFormer显著超越了前沿方法,成为领域推广和不受目标图像限制的语义分割任务中新的性能标杆。
segformer-b1-finetuned-ade-512-512 - SegFormer-b1在ADE20k数据集上微调的语义分割模型
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b1是一种针对语义分割任务的深度学习模型,在ADE20k数据集上进行了微调。该模型结合了层次化Transformer编码器和轻量级MLP解码头,在512x512分辨率下展现出优秀的分割效果。模型经过ImageNet-1k预训练后,通过添加解码头并在特定数据集上微调,可直接应用于语义分割或作为其他相关任务的基础。
segformer-b4-finetuned-ade-512-512 - 512x512分辨率下SegFormer的高效Transformer语义分割实现
ADE20kGithubHuggingfaceSegFormerTransformer图像处理开源项目模型语义分割
本项目展示了SegFormer模型如何应用在ADE20k数据集上,以512x512分辨率进行微调。该模型采用分层Transformer编码器与轻量级全MLP解码头的设计,并在ImageNet-1k预训练后用于语义分割。其适用于多个基准测试如ADE20K和Cityscapes,为视觉分割提供强大而灵活的工具。用户可以使用该模型进行图像的语义分割,或选择适合特定任务的微调版本。
bros-base-uncased - 整合文本布局的文档信息提取预训练语言模型
BROSGithubHuggingface光学字符识别开源项目文本布局分析文档信息提取模型预训练语言模型
BROS是一种创新的预训练语言模型,结合了文本内容和空间布局信息,以提升文档关键信息提取的效果。该模型能够处理OCR识别后的文本和边界框数据,适用于多种文档分析任务,例如从收据中提取商品清单。BROS提供base和large两种规模的模型,参数量分别约为110M和340M。这一开源项目已在Hugging Face平台上发布,为研究人员和开发者提供了强大的文档信息提取工具。
electra-large-discriminator - ELECTRA模型 革新自监督语言表示学习
ELECTRAGithubHuggingface判别器开源项目文本编码模型自然语言处理预训练
ELECTRA是一种创新的自监督语言表示学习方法,能够以较少的计算资源高效预训练transformer网络。该模型通过区分真实和生成的输入标记进行训练,原理类似GAN判别器。ELECTRA在小规模实验中展现出优异性能,仅需单GPU即可达到强大效果;在大规模应用中,它在SQuAD 2.0数据集上达到了领先水平。此项目开源了ELECTRA的预训练和微调代码,适用于分类、问答和序列标注等多种自然语言处理任务。
deberta-large - DeBERTa模型利用解耦注意力机制提升自然语言理解能力
DeBERTaGithubHuggingface开源项目微软模型注意力机制自然语言处理语言模型
DeBERTa是微软开发的预训练语言模型,基于BERT和RoBERTa进行改进。该模型引入解耦注意力和增强型掩码解码器,在80GB训练数据上优化后,在多数自然语言理解任务中超越BERT和RoBERTa。DeBERTa在SQuAD和GLUE等基准测试中表现出色,其中DeBERTa-V2-XXLarge版本在多项任务上达到顶尖水平。研究者可通过Hugging Face的transformers库使用和微调DeBERTa模型。
dpt-beit-base-384 - 基于BEiT主干的DPT模型实现单目深度估计
DPTGithubHuggingface图像处理开源项目模型深度估计神经网络计算机视觉
DPT (Dense Prediction Transformer) 是一个基于BEiT主干的模型,专门用于单目深度估计。该模型在140万张图像上训练,可进行零样本深度估计。采用Transformer架构,具备强大的密集预测能力,能生成高质量深度图。模型可通过Python代码或pipeline API轻松使用,为计算机视觉任务提供了有力工具。
deberta-xlarge-mnli - 高性能自然语言处理模型面向多任务学习优化
BERTDeBERTaGithubHuggingface人工智能开源项目机器学习模型自然语言处理
DeBERTa-xlarge-mnli是一个经过MNLI任务微调的大型语言模型。该模型采用解耦注意力机制和增强型掩码解码器,在多项NLU任务中表现优异。它在SQuAD、GLUE基准测试等任务上的成绩超越了BERT和RoBERTa,为复杂的自然语言理解应用提供了强大支持。
subnet9_Aug19 - 标准化AI模型规范文档编写指南
GithubHuggingfacetransformer人工智能开源项目机器学习模型模型卡片模型评估
Transformers库推出的标准化AI模型文档框架,系统性记录模型基本信息、使用场景、训练参数、评估方法和环境影响。通过规范化的架构说明、技术细节和风险评估,为开发者提供完整的模型信息参考。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号